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Abstract

Dementia in Alzheimer’s disease progresses alongside neurodegenerationl—4, but the specific
events that cause neuronal dysfunction and death remain poorly understood. During normal
ageing, neurons progressively accumulate somatic mutations® at rates similar to those of dividing
cells®7 which suggests that genetic factors, environmental exposures or disease states might
influence this accumulation®. Here we analysed single-cell whole-genome sequencing data from
319 neurons from the prefrontal cortex and hippocampus of individuals with Alzheimer’s
disease and neurotypical control individuals. We found that somatic DNA alterations increase

in individuals with Alzheimer’s disease, with distinct molecular patterns. Normal neurons
accumulate mutations primarily in an age-related pattern (signature A), which closely resembles
‘clock-like” mutational signatures that have been previously described in healthy and cancerous
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cells®10. In neurons affected by Alzheimer’s disease, additional DNA alterations are driven

by distinct processes (signature C) that highlight C>A and other specific nucleotide changes.
These changes potentially implicate nucleotide oxidation*11, which we show is increased in
Alzheimer’s-disease-affected neurons in situ. Expressed genes exhibit signature-specific damage,
and mutations show a transcriptional strand bias, which suggests that transcription-coupled
nucleotide excision repair has a role in the generation of mutations. The alterations in Alzheimer’s
disease affect coding exons and are predicted to create dysfunctional genetic knockout cells

and proteostatic stress. Our results suggest that known pathogenic mechanisms in Alzheimer’s
disease may lead to genomic damage to neurons that can progressively impair function. The
aberrant accumulation of DNA alterations in neurodegeneration provides insight into the cascade
of molecular and cellular events that occurs in the development of Alzheimer’s disease.

Alzheimer’s disease (AD) is a common, progressive and fatal age-associated
neurodegenerative disorder that is characterized by neuron loss and stereotypic deposition
of misfolded proteins2. The formation of oligomers of amyloid-p may initiate disease
pathogenesis, triggering a cascade of events that include the development of tau
neurofibrillary tangles and oxidative stress®. Tau deposition, which correlates most closely
with clinical features, progresses topographically over the course of illness from medial
temporal lobe structures to the neocortex, as delineated in the Braak staging system?.
Despite substantial mechanistic knowledge of the formation of misfolded proteins, the core
basis of cellular dysfunction in AD is not well understood.

Somatic mutations occur in healthy human tissues2-14, including post-mitotic neurons>16,
in which they accumulate during ageing in a process known as genosenium®1/. Analysis

of somatic mutational signatures can identify the mutagenic forces responsible, including
ultraviolet irradiation in sun-exposed cancers and tobacco-associated polycyclic aromatic
hydrocarbons in lung cancers®18. In human neurons, mutational signature analysis has
revealed that somatic single-nucleotide variants (SSNVs) result from multiple mutagenic
forces, potentially including the oxidation of DNA nucleotides®. AD shows increased
oxidative stress and damaged nucleotides?, but the extent to which these damaged
nucleotides are eliminated by manifold DNA repair processes, and whether they result

in persistent DNA mutations, producing permanent effects on genome structure or
transcription, are not known. Bulk methods, including targeted gene sequencing?® and
single-molecule sequencing?0, have profiled aspects of AD somatic genetics, but AD has
not to our knowledge been examined at the level of individual cellular genomes. Here, to
test the hypothesis that specific mechanisms of genomic damage affect AD neurons, we
applied single-cell whole-genome sequencing (scWGS) to single neurons from the brains of
individuals with AD and neurotypical control individuals to compare the number, genomic
locations and classes of somatic mutations that are associated with AD.

Somatic mutations in neurons during ageing

We performed scWGS on pyramidal neurons isolated from the brains of individuals with
AD and neurotypical control individuals (Fig. 1a, Supplementary Tables 1, 2). We stained
for the pan-neuronal marker NeuN to mark neurons, and further gated only the largest
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NeuN-positive nuclei (Fig. 1b). This separates, to a purity greater than 99%, the nuclei of
pyramidal, excitatory neurons—which are preferentially vulnerable to both neurofibrillary
tangle formation2! and cell death in ADZ2—from those of glia and smaller, inhibitory
neurons (Fig. 1c). Here, scWGS involves single-cell alkaline lysis on ice, whole-genome
amplification using multiple displacement amplification (MDA) and then several screening
and quality control steps, so that only genomes that are well amplified are finally sequenced.
In total, using MDA, we analysed 91 neurons from 8 cases of AD and 159 neurons

from 18 neurotypical control individuals (Table 1). We identified sSSNVs using the LiIRA
pipeline23, which uses linkage to germline haplotypes to increase specificity and estimates
the genome-wide somatic mutation rate by accounting for the cell-specific proportion of
phaseable linked sites and false positive rate. For these MDA-amplified single-cell genomes,
we performed additional filtration steps based on previously reported patterns of nucleotide
substitution attributed to artefacts of genome amplification by MDA24 (see Methods,
Extended Data Fig. 1). This set of filtered sSSNV calls showed a variant allele fraction
distribution that was very similar to that of germline heterozygous SNVs in single-cell

data (Extended Data Fig. 2), which allowed us to confirm that, in neurotypical individuals,
neuronal sSSNVs increased with age at a rate of 16-21 sSNVs per year (Fig. 1d, Extended
Data Fig. 3a—d)—consistent with previous work on neurons®20:25, Studies using clonally
expanded cells from other human tissues have shown comparable yearly increases in SSNVSs,
ranging from 13 to 55 sSNVs per year, with higher rates in more rapidly dividing cell types
(Extended Data Table 1).

We next examined the accumulation of SSNVs in pyramidal neurons located in the CAl
subfield of Ammon’s horn of the normal hippocampus, as this is a critical region in

AD and other diseases. Hippocampal CAL1 neurons from individuals who died with no
neurological diagnosis showed a trend towards the accumulation of SSNVs with age (Fig.
1e), which was not significantly different from the increase in SSNVs seen in prefrontal
cortex (PFC) neurons from neurotypical control individuals (P= 0.72, linear mixed-effects
regression model (linear mixed model); overlay in Fig. 1f). When considering the PFC and
the hippocampus together (Extended Data Fig. 3a—d), this set of single cells highlights

a common pattern of SSNV accumulation in the pyramidal neurons of neurotypical
individuals.

Large-scale DNA sequencing studies in cancer have identified patterns and contexts of
nucleotide substitution, termed ‘signatures’8, which often reveal mutagenic forces. In
normal PFC neurons, the age-related increase in mutations is driven mainly by certain

C>T and T>C changes, termed signature A®. This signature resembles the age-related
‘clock-like” signature that is observed in other normal cells as well as in essentially all
cancer cells?, designated as signature SBS5 in the COSMIC mutational signature database
(https://cancer.sanger.ac.uk/cosmic/signatures). Signature decomposition analysis of SSNVs
from the composite dataset of PFC and hippocampal pyramidal neurons showed that the
contribution of signature A in each neuron increased with age, at a rate of 15.0 £ 1.2 sSNVs
gained per year (Fig. 1g). This age-related increase in signature A mutations is similar for
PFC and hippocampal pyramidal neurons (P= 0.18, linear mixed model), and is the major
driver of age-related SSNV accumulation in normal neurons. Despite their universal presence
in many cell types, and their accumulation in nondividing cells, the cellular mechanism
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of such clock-like mutations is not clear. Signature SBS5 exhibits a transcriptional strand
bias®, which suggests that events leading to these mutations are associated with RNA
transcription. During transcription, the double helix is unwound, exposing single DNA
strands to cytosine and thymine deaminationl?, which are subject to transcription-coupled
nucleotide excision repair (TC-NER). Transcription may therefore sensitize expressed loci to
somatic mutagenesis through transcription-associated damage or ineffective repair.

Somatic mutations in AD

We next assessed the burden of SSNVs in neurons from the brains of eight individuals with
AD and found that AD neurons showed significantly more called sSNVs than expected on
the basis of age (P = 6.5 x 1072, linear mixed model; Fig. 1h). This excess was variable
between neurons, mirroring the variable presence of AD pathology within neurons of a
given brain region. AD neurons also showed a significant increase in called SSNVs in
MDA experiments when directly compared to age-matched neurotypical control neurons (P
= 7.1 x 1072, two-tailed Wilcoxon test; Fig. 1i). This increase remained after controlling
for potential covariates including post-mortem interval, sample storage time, sample DNA
quality, sequencing depth, sequencing quality score, library insert size and humber of
heterozygous germline SNVs, as well as technical metrics of sScCWGS evenness (see
Methods, Extended Data Fig. 3e-h). In the PFC, we observed significant gains in SSNVs
in AD relative to normal ageing in seven out of eight individual cases of AD (Fig. 1j).
Several of the genomes with the highest sSNV counts in AD came from the hippocampus,
in which five of eight cases also showed significant increases in SSNVs compared with
normal ageing (Fig. 1k). However, in three cases, the assayed hippocampal neurons did
not show a detectable increase in the handful of cells assayed. On the basis of tau (Braak)
and amyloid-p (Consortium to Establish a Registry for Alzheimer’s Disease; CERAD)
neuropathological staging, hippocampal pathology appears to precede PFC damage, and the
hippocampus of these late-stage cases invariably showed widespread neuronal loss as well
(not shown). Thus, it is possible that highly mutated neurons are lost before death and
therefore not possible to assay here, so our results may reflect resilient neurons that have
survived despite advanced AD?2, These results show that neurons in AD contain hundreds
of additional sSSNVs beyond that expected for their age, indicating that the disease process
produces a level of genomic damage that is on par with more than a decade of normal
accumulation of SSNVs.

The somatic mutations identified in AD neurons are pervasively distributed across the
genome (Fig. 11), with a trend towards an excess in regions at least 1 kb upstream from

the transcription start sitte—where DNA damage has been implicated during neuronal gene
transcription?6—that does not survive Bonferroni correction (P = 0.045, two-tailed t-test;
Extended Data Fig. 4). The broad genomic distribution of variants suggests that, rather than
constituting a specific initial event in disease pathogenesis, somatic mutations are more
likely to be secondary, resulting from other events that initiate AD and instigate mutagenic
processes. Specifically, we did not observe somatic instances of known pathogenic
mutations in classic germline AD risk genes (APP, PSEN1, PSENZ and APOE), concordant
with a recent report2’, nor did we observe somatic increases in copy number of the APP
gene, contrary to a previous study2® and as we reported in detail separately2°. We also
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observed no consistent effect of an individual’s ApoE status or sex on the accumulation of
SSNVs.

Mutational signature analysis in AD neurons

We next performed mutational signature analysis to identify whether specific processes
cause somatic alterations in AD neurons. De novo signature decomposition revealed
mutational signatures concordant with those previously reported in human neurons®
(Extended Data Fig. 5). We focused our analysis on neuronal signatures A and C (Fig.

2a), as signature B contains clonal developmental mutations, but is also where artefactual
C>T mutations created by MDA amplification aggregate?4. Signature A mutations increase
with age in all samples, which suggests that this clock-like signature (that is most similar

to the clock-like signature SBS5 from cancer®) constitutes an inherent feature of genome
ageing. Signature A also shows a marginal increase in AD relative to age-matched controls
(Fig. 2b, c), which does not reach statistical significance in these MDA experiments, but
suggests that these mutational mechanisms could be accentuated in the setting of disease. On
the other hand, AD neurons show a pronounced increase in signature C compared to controls
(Fig. 2d, e), which accounts for most of the observed excess in alterations. The signature

C burden shows more variation between neurons than that for signature A (Extended Data
Fig. 5d), which suggests that signature C could result from irregular ‘calamitous’ events, in
contrast to the uniform ageing represented in signature A.

Signature C includes C>A substitutions, which have previously been associated with
oxidative damage to guanine nucleotides8. Signature C also has a significant contribution
from the cancer-associated signature SBS8 (ref. ®) (Extended Data Fig. 6a). This signature

is increased in stem cells with disrupted TC-NER19:30 and we have observed an increase in
signature C in single human neurons deficient in TC-NER owing to £ERCC6 mutations, and
in neurons deficient for global NER owing to X”4 or XPD mutations®. Overlap between AD
sSNVs and other cancer-derived signatures also suggests a potential role for NER in T>A,
T>C and C>T mutations (Extended Data Fig. 6b). Signature C has been reported in normal
neurons at low but highly variable levels®, with some accumulation with age in the normal
PFC, and a similar signature has also been reported in ageing stem cells from the liver and
intestineS. Given that increased reactive oxygen species (ROS) and oxidative nucleic acid
lesions have been reported in AD#31-33, a plausible mechanism for the accumulation of
signature C in AD is that increased oxidative damage overwhelms NER, which could also be
attenuated in AD.

The set of excess mutations in individuals with AD, represented as the trinucleotide
spectrum of residual mutations when subtracting those present in control individuals, also
includes contributions from the cancer signature SBS6 (Extended Data Fig. 6b), which is
associated with defective DNA mismatch repair, raising the possibility that other repair
mechanisms may further contribute to the generation of somatic mutations in AD neurons.
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Oxidative damage in AD neurons

Because our mutational signature analysis suggested that DNA oxidation—previously
observed in bulk analyses of brains from individuals with AD*1*—might contribute

to the excess sSSNVs in AD, we directly examined nucleotide oxidative damage in
individual neurons. The most frequent oxidized nucleotide lesion due to oxidative stress

is 8-oxoguanine (8-0x0G), and this is therefore used as a biomarker for cellular oxidative
status and DNA damage. Immunofluorescence microscopy using an antibody targeting
8-0x0G showed that there were significantly higher levels of 8-0xoG in AD neurons than in
neurotypical control neurons (P= 1.2 x 1075, linear mixed model; Fig. 2f, Extended Data
Fig. 7), indicating that increased levels of oxidative nucleotide damage contribute to C>A
changes and to the increase in signature C in AD neurons.

Transcriptional influence on somatic SNVs

Mutations in genes that are critical for neuronal function and survival could directly affect
cellular fitness. Despite the preferential repair of transcribed genes in human neurons34,
the burden of sSSNVs in transcribed regions of the genome correlated with gene expression
levels in the brain (2= 3.1 x 1073, Pearson correlation; Fig. 2g). When this observation
was separated by signature, with increased expression we observed increased signature A
mutations (P= 5.0 x 107>, Pearson correlation), but decreased signature C mutations (P=
6.5 x 1073, Pearson correlation). These findings provide further support for the hypothesis
that ageing-associated signature A and AD-associated signature C arise from different
mechanisms. For signature A, events during transcription appear to have a role in generating
mutations, whereas signature C correlates inversely with expression and therefore may be
more effectively repaired during transcription, including by TC-NER3®.,

Gene Ontology (GO) analysis of loci mutated in AD and control neurons revealed

that genes involved in neuronal function were enriched for sSSNVs (Fig. 2h). When
considered together with the expression-sSNV findings, AD neurons show an influence

of transcriptional processes on mutation generation. Such a transcriptional influence can
produce an asymmetric pattern of mutations on the paired DNA strands. We therefore
distinguished the sSNV sites by template status, between transcribed template strands and
untranscribed strands (Fig. 2i). We found a significant strand bias for C>A mutations on

the transcribed strand, along with a modest strand bias for C>T and T>C, providing further
evidence that errors in transcription-related mechanisms have a role in the generation of
sSNVs in AD neurons. As one example, an unrepaired oxidized guanine nucleotide, 8-0x0G,
on an untranscribed strand could become a G>T mutation, which would be classified as

a C>A mutation on the transcribed strand. In addition to the apparent protective role of
NER processes against somatic mutation, the involvement of NER in signature C mutations
also presents a potential mechanism for the accumulation of mutations in non-cycling cells,
as NER involves the removal of an approximately 29-bp sequence by an exonuclease,
followed by the replication of those 29 bp from the remaining DNA strand36; this allows for
replication errors during repair if the template strand is also damaged.
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Potential consequences of somatic mutations in AD

Somatic mutation or single-stranded damage that alters amino acids can contribute

to neuronal dysfunction or loss by many mechanisms, including direct impairment of
transcription, alterations in protein stability or creation of neoantigens. In protein-coding
genes, AD neurons show more nonsynonymous mutations than age-matched control neurons
(Fig. 2j), which has the potential to impair dosage-sensitive genes, or to create neoantigen
peptides that could elicit T lymphocyte activation, immune attack and consequent cellular
damage. Observations of clonal CD8" T cells in cerebrospinal fluid and brain tissue in
AD37 suggest that such autoactivation could be relevant in AD. Moreover, as somatic
alterations accumulate in a genome, the likelihood of two deleterious exonic alterations in
the same gene, producing a knockout cell, increases exponentially. We modelled the rate

of sSNV-caused knockout neurons (Fig. 2k), and found a substantial projected increase in
AD over controls (P=0.022, generalized estimating equation model). This model suggests
that dysfunctional neurons would be markedly more abundant in AD, which may be
compounded by the length of certain AD-relevant genes38; compromising neuronal function
may therefore be one way in which sSNVs affect cellular physiology3®. The pronounced
effect of genomic damage, even in non-dividing cells, is underscored by the observation that
multiple defects in DNA repair result in neuronal dysfunction and degeneration®40.

Interrogation of AD neuron genomes by PTA

The experiments discussed thus far, which used MDA to amplify the genomes of single
neurons, used LiRA variant calling to counteract allele dropout?3 and signature-based
filtering of amplification artefacts (Extended Data Fig. 1), which are features of MDA-based
methods. To corroborate our findings from MDA-amplified single neuron genomes, we
applied a second single-cell amplification method that removes most or all amplification
artefacts#142 as an orthogonal approach. Primary template-directed amplification (PTA)*!
achieves highly uniform genome amplification by using chain-terminating nucleotides

to disfavour long amplification products that can be re-primed. PTA thus allows the
identification of sSSNVs in single human neurons while mitigating known single-cell
artefacts that can be seen from MDA%*2, obviating the need for signature-based variant
filtering. PTA-based scWGS of human neurons has confirmed that somatic mutations
increase with age®2. We performed PTA-based scWGS on a small sample of neurons from
most brains profiled by MDA (29 neurons from 7 cases of AD and 40 neurons from 13
neurotypical control individuals; Table 1) and confirmed that AD neurons contain increased
somatic alterations compared to controls (P= 3.9 x 1074, linear mixed model; Fig. 3a).
This effect remained after controlling for technical metrics (Methods, Extended Data Fig.
8c—f). The magnitude of the PTA-detected AD increase is somewhat lower than what was
observed by MDA, which is likely to reflect in part residual amplification artefacts in MDA
material. SSNVs detected by PTA show trinucleotide spectra (Extended Data Fig. 8a) and
COSMIC signature contributions (Extended Data Fig. 8b) that are highly similar to those
seen in multiplexed end-tagging amplification of complementary strands (META-CS), a
recently reported duplex sequencing method that explicitly distinguishes double-stranded
mutations and single-stranded DNA lesions?®. PTA-identified mutational spectra closely
cluster with META-CS-identified double-stranded mutations and are distinct from META-
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CS single-stranded lesions, which strongly suggests that PTA-detected sSSNVs represent
double-stranded somatic mutations.

We also examined PTA-detected mutations by signature decomposition, which again
confirmed that signature A mutations increase with age in a clock-like manner (Fig. 3b),
with a marginally significant increase in signature A in AD neurons (P= 0.04, linear mixed
model). The AD-associated increase in mutations is most pronounced for signature C (P=
5.3 x 1073, linear mixed model; Fig. 3c). As with the increase in total mutations in AD
neurons, the PTA mutational signature findings mirrored the trends seen in MDA-amplified
neuron genomes. The residual PTA-detected mutations in AD neurons show a distinct
trinucleotide spectrum (Extended Data Fig. 8a), with an excess of C>A and C>T mutations
that is also seen in MDA-amplified neurons. When analysed for contributions of COSMIC
cancer mutation signatures, the residual mutations in AD neurons show a distinct pattern
from that of control neurons (Extended Data Fig. 8b), including many signatures seen with
MDA-detected AD residual mutations. Among these are SBS8 as well as SBS30, which is
associated with the DNA repair enzyme NTHLL1 that is involved in oxidative lesion repair.
The PTA-detected burden of SSNVs in transcribed regions correlated with levels of gene
expression in the brain (= 2.8 x 1073, Pearson correlation; Fig. 3d), whereas signature A
and C mutations showed similar patterns to those seen with MDA-detected sSNVs, pointing
to specific effects of transcriptional activity on mutation occurrence. We also noted a C>A
strand bias in PTA-amplified AD neurons (Fig. 3e), further implicating transcription-related
events in the generation of SSNVs in AD neurons. Thus, both scWGS approaches identified
similar patterns, and suggest that the pathogenic mutational mechanisms in AD include
DNA oxidation, NER DNA repair and transcriptional activity.

Although several studies have confirmed that neurons accumulate sSSNVs with age®:20:25,
one recent study using a single-molecule technique called NanoSeq did not find greater
genome-wide mutation rates in AD-affected brains compared to aged brains of neurotypical
control individuals, and actually reported a small but significant decrease in somatic
mutations in AD20. There are a few potential reasons for this discrepancy as compared to
our findings in single AD neurons. One possibility is that single-stranded lesions or variants
contribute to our signal, although we have taken lengths to exclude this, including custom
computational removal of known MDA artefacts and application of the PTA scWGS method.
The NanoSeq study may also reflect an analysis of different cell populations from the
individual cells that we studied here. The NanoSeq analysis studied bulk DNA from 15,000
pooled cells sorted using NeuN without size gatingZ®, but we observed that sorting by NeuN
alone includes excitatory and inhibitory neurons, as well as some glial cells (Fig. 1b, c).
Therefore, the NanoSeq study does not enrich for the excitatory pyramidal neurons that

are selectively vulnerable to AD?122, which is likely to obscure the modest but consistent
difference that we find when pyramidal neurons are enriched. The bulk NanoSeq method on
all NeuN-expressing cells would also be susceptible to differences in cell-type abundance,
which could account for the slightly decreased mutation count that was observed. Thus,
increased somatic mutation burden in the AD brain may be limited to precisely the neuron
subtypes that are most affected by the disease, potentially sparing some cell types.
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Discussion

Our analysis reveals that excitatory neurons in the brains of individuals with AD accumulate
genomic damage—and likely permanent mutations—beyond the levels that occur as a result
of ageing alone. The pattern of genomic SNV accumulation in AD neurons appears to

be distinct from an accentuation of normal ageing, as suggested by (1) the abundance of
signature C, which is present but limited in the brain of neurotypical control individuals;
and (2) signature-specific transcriptional influences. These genomic changes may include

a spectrum of manifestations, including single-stranded DNA lesions and double-stranded
mutations. Notably, putative mutations identified by PTA-based scWGS were molecularly
similar to bone fide double-stranded mutations identified by duplex sequencing, but
dissimilar to single-stranded lesions. These correlations, combined with the evenness of
PTA genome coverage, suggest that the AD-specific somatic alterations are predominantly
double-stranded mutations. Future studies that are specifically designed to compare DNA
lesions with permanent mutations may shed further light on the differential effects these
related phenomena have in AD. Other types of somatic alterations—such as short insertions
and deletions, structural variants and retrotransposition events—can also be explored in
greater depth as technologies improve.

Beyond abundance, the specific patterns of somatic alterations in AD neurons provide clues
as to their causes and potential effects in AD pathogenesis (Fig. 4), and identify potential
therapeutic targets. Signature C is notable for the presence of C>A variants, associated with
oxidative damage, which has been observed previously in AD* and which we found to

be increased in AD neurons. This suggests that SSNVs occur downstream of ROS during
disease pathogenesis. Signature C has a notable similarity to COSMIC signature SBS8,
which is associated with the transcription-coupled repair of damaged guaninel?, strongly
suggesting that it accumulates either through disease-related defects in NER, or, more
likely, from an accelerated accumulation of oxidized nucleotides that overwhelms the repair
pathway. Oxidized nucleotides reflect the presence of increased ROS, which have previously
been reported in the brain of individuals with AD, and which can be generated by a variety
of processes—including inflammation and mitochondrial dysfunction, which have also been
reported in AD*3. Our data show how these oxidative lesions may impair genomic function
by interacting with mutations that occur as a part of ageing.

A major question that remains concerns how the buildup of AD-related genomic damage
relates to the well-established accumulation of amyloid-p and tau proteins-2. Indeed, both
of these AD-associated misfolded proteins can induce ROS#445, with the tau effect being
mediated by mitochondrial dysfunction®. Furthermore, tau can trigger double-stranded
DNA breaks?*®, thus further compounding the effects of SSNVs and potentially inducing
more*’. Many aspects of the oxidative stress induced by AD proteins are not clear, but

this process may also include the amyloid-p-stimulated activation of microglia, which can
produce ROS directly and can also indirectly initiate the generation of ROS through the
release of pro-inflammatory cytokines*8. Binding of amyloid-p to redox-active iron may
also add oxidative stress?®. It will be important to identify how protein misfolding and other
known events in AD relate to the accumulation of somatic mutations in the pathogenesis of
disease.
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Methods

Data reporting

No statistical methods were used to predetermine sample size. The experiments were not
randomized, and the investigators were not blinded to allocation during experiments and
outcome assessment.

Human tissue samples and selection of cases of AD

Post-mortem frozen human tissues were obtained from the Massachusetts Alzheimer’s
Disease Research Center (MADRC) at Massachusetts General Hospital and the NIH
Neurobiobank at the University of Maryland Brain and Tissue Bank (UMBTB).

Tissue collection and distribution for research and publication was conducted according
to protocols approved by the Partners Human Research Committee (for MADRC:
1999P009556/MGH, expedited waiver category 5) and the University of Maryland
Institutional Review Board (for UMBTB: 00042077), and after provision of written
authorization and informed consent. Research on these de-identified specimens and data
was performed at Boston Children’s Hospital with approval from the Committee on
Clinical Investigation (S07-02-0087 with waiver of authorization, exempt category 4).
Many neurotypical control tissues and datasets were obtained as part of a previous study®.
Neurotypical control cases had no clinical history of dementia or other neurological disease.
AD cases had a clinical history of dementia consistent with AD, pathologically confirmed
AD pathological change (Braak stage V-VI) and no other notable neurodegenerative
pathology. Age-matched cohorts included individuals who were over 50 years old (Table
1).

Isolation of individual pyramidal neurons for single-cell studies

The isolation of single neuronal nuclei using fluorescence-activated nuclear sorting (FANS)
for the neuronal nuclear transcription factor NeuN and whole-genome amplification (WGA)
using MDA®! have been described previously®°2. In brief, nuclei were prepared from
unfixed frozen human brain tissue, previously stored at —80 °C, in a dounce homogenizer
using a chilled tissue lysis buffer (10 mM Tris-HCI, 0.32 M sucrose, 3 mM Mg(OAc)s,

5 mM CaCl,, 0.1 mM EDTA, 1 mM DTT, 0.1% Triton X-100, pH 8) on ice. Tissue

lysates were layered on top of a sucrose cushion buffer (1.8 M sucrose 3 mM Mg(OAC)o,

10 mM Tris-HCI, 1 mM DTT, pH 8) and ultra-centrifuged for 1 h at 30,000g. Nuclear
pellets were resuspended in ice-cold PBS supplemented with 3 mM MgCly, filtered, then
stained with anti-NeuN antibody directly conjugated to Alexa Fluor 488 (AF488) (Millipore
MAB377X, clone A60, 1:1,250). NeuN staining produced a bimodal signal distribution (Fig.
1b, bottom), distinguishing NeuN* and NeuN~ nuclei. Large neuronal nuclei, representing
excitatory pyramidal neurons, were then identified by flow cytometry (using software BD
FACSDiva v.8.0.2) by targeting the nuclei with highest NeuN signal among the NeuN*
neuronal fraction, while also gating for the population with the highest forward scatter

area (FSC-A) signal, designated by the black box in Fig. 1b. This high-FSC-A, high-NeuN
population is intended to represent large neurons, comprising 2-5% of the total population
of nuclei in each sample.
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The composition of the targeted population of large neurons was assessed using single-
nucleus RNA transcriptomic sequencing (SnRNA-seq), along with two control populations:
all cells and all NeuN™ cells (each shown with respective gating boxes in Fig. 1b). ShRNA-
seq of these three populations of cellular nuclei was performed on a representative tissue
sample (control individual 1465, prefrontal cortex). Nuclei were isolated as described
above, with the following modifications: 0.2 U pl=1 Protector RNAse inhibitor (Roche
RNAINH-RO) and 0.2 U pl~1 SuPERase-IN RNAse inhibitor (Invitrogen) were both added
to the tissue lysis buffer and to the immunostaining buffer, and MgCl, was omitted from

the immunostaining buffer. For each of the 3 populations, 16,000 nuclei were sorted

into one well of a 96-well plate, then subjected to SnRNA-seq using the 10X Genomics
Next GEM Single Cell 3° GEM Kit v3.1 and Chromium Controller. From these three
populations, three libraries were prepared, each with dual indexes using the 10X Genomics
Dual Index Plate. Each library was then sequenced on lllumina NovaSeq S4. The raw
snRNA-seq data of three 10X libraries were analysed separately and then aggregated by Cell
Ranger (v.6.0.0)%3, followed by variance normalization, #SNE clustering and visualization
processed by Pagoda2 (v.0.1.0)%*. Clusters with 50 or more cells were manually annotated
as different neuronal and glial subtypes on the basis of the expression of marker genes using
a similar protocol to that described in a previous study>? These snRNA-seq data (Fig. 1c)
enabled the assessment of various sorting populations shown in Fig. 1b. The full population
of cells (DAPI*) contained a mixture of excitatory neurons, inhibitory neurons and glia. The
overall NeuN™ population was highly enriched for neurons, but contained many inhibitory
neurons and some glia. The population of cells targeted in this study, large NeuN* nuclei,
was highly enriched in pyramidal neurons, consisting of 100% neurons, of which 99.3%
were excitatory neurons (Fig. 1c), with minimal inhibitory neurons and glia.

scWGS of pyramidal neurons using MDA

Single nuclei, prepared as described above, were sorted one nucleus per well into 96-well
plates, with each well containing 2.8 pl alkaline lysis buffer (200 MM KOH, 5 mM EDTA,
40 mM DTT) pre-chilled on ice. Nuclei were lysed on ice for 15-30 min, then neutralized
on ice in 1.4 pl neutralization buffer (400 mM HCI, 600 mM Tris-HCI, pH 7.5). These cold
temperatures appear to be important to limit artefacts®>. MDA was then performed in a 20
ul total reaction volume by addition of an MDA master mix (12.18 pL QIAGEN REPLI-g
reaction buffer, 2.675 pl H,0, 0.105 pl DTT, 0.84 ul REPLI-g Phi29 polymerase enzyme).
MDA was performed at 30 °C for 2 h. This protocol was applied to all new MDA samples
in this study, and was confirmed to yield equivalent results as a prior protocol using Phi29
polymerase from a different distributor (repliPHI, Epicentre).

Samples were subjected to quality control by DNA quantification (PicoGreen, 3 ug yield
required) and multiplex PCR for four random genomic loci. For an additional quality control
step, we performed low coverage (0.5x) WGS, and cells with sufficiently even genome
coverage (median absolute pairwise difference, MAPD; and coefficient of variation, CoV)
were processed for deep sequencing. For germline reference, bulk DNA was purified using
phenol:chloroform:isoamyl alcohol extraction and isopropanol precipitation, without RNAse
A treatment. Amplified single-neuron genomes were prepared for sequencing by DNA
shearing and libraries generated by Psomagen (Macrogen) and Novogene using Illumina
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Tru-Seq kits and Illumina HiSeq X10 paired end sequencing (150 bp x 2) (Supplementary
Table 1), as described previously®.

scWGS of pyramidal neurons using PTA

Single neurons, prepared as described above, were sorted one nucleus per well into

96-well plates and their genomes were amplified by PTA%142 a method that pairs an
isothermal DNA polymerase with a termination base to induce quasi-linear amplification.
PTA reactions were performed using the ResolveDNA Whole Genome Amplification Kit
(previously known as SkrybAmp EA WGA Kit) (BioSkryb Genomics). Nuclei were sorted
into 3 pl Cell Buffer pre-chilled on ice. Nuclei were then lysed by addition of 3 pul MS Mix,
with mixing at 1,400 rpm performed after each step. Lysed nuclei were then neutralized with
3 ul SN1 buffer. Three microlitres of SDX reagent was then added, followed by a 10-min
incubation at room temperature. Eight microlitres of reaction mix (containing enzyme) was
then added, for a total reaction volume of 20 ul. Amplification was carried out for 10 h

at 30 °C, followed by enzyme inactivation at 65 °C for 3 min. Amplified DNA was then
cleaned up using AMPure, and the yield was determined using PicoGreen binding (Quant-
iT dsDNA Assay Kit, Thermo Fisher Scientific). Samples were then subjected to quality
control by multiplex PCR for four random genomic loci as previously described®, and also
by Bioanalyzer for DNA fragment size distribution. Amplified genomes showing positive
amplification for all four multiplex PCR loci were prepared for Illumina sequencing. In
contrast to MDA, a low-coverage WGS screening step was performed.

Libraries were prepared following a modified KAPA HyperPlus Library Preparation
protocol described in the ResolveDNA EA Whole Genome Amplification protocol. In
brief, end repair and A-tailing were performed for 500 ng amplified DNA input. Adapter
ligation was then performed using the SeqCap Adapter Kit (Roche, 07141548001). Ligated
DNA was cleaned up using AMPure and amplified through an on-bead PCR amplification.
Amplified libraries were selected for a size of 300-600 bp using AMPure. Libraries were
subjected to quality control using PicoGreen and TapeStation HS DS100 Screen Tape
(Agilent PN 5067-5584) before sequencing. Single-cell genome libraries were sequenced
on the Illumina NovaSeq platform (150 bp x 2) at 30x coverage (Supplementary Table

1). Data from PTA-amplified neuronal genomes in AD were analysed alongside data from
control neurons that are reported elsewhere®2.

Read-mapping and generation of BAM files

Reads generated from WGS were mapped onto the human reference genome (GRCh37
with decoy) by BWA (v.0.7.15)%6 with default parameters. Duplicate reads were marked
by MarkDuplicates of Picard tools (v.2.8) and post-processed with local realignment
around indels and base quality score recalibration using Genome Analysis Toolkit (GATK)
(v.3.5)%7.

Calling of sSNVs from scWGS data

We used phasing-based linked read analysis (LiRA, v.2018Feb)23 to identify SSNVs
against individual-specific bulk germline reference genomes, as described previously®.
The initial somatic and germline variants were called using GATK’s HaplotypeCaller and
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germline variants were further phased by Shapeit 2 (v.904). sSSNVs were called by LiRA
and distinguished from technical artefacts when showing strong evidence for only two
haplotypes with paired-end, read-backed linkage between the sSSNV candidate and the
adjacent germline heterozygous site. The autosomal genome-wide burden of sSSNVs was
then calculated by accounting for the proportion of phaseable sites and estimated false
positive rate. We should emphasize that the raw LiRA calls are an intermediate step that
requires scaling by a power ratio to calculate genome-wide somatic mutation rates that are
comparable between cells (for example from MDA data, see Extended Data Fig. 1b). Of
note, LiRA is only designed to call phased somatic variants in diploid genome regions, so
we only considered sSNVs in autosomes for subsequent analyses to avoid potential detection
bias in sex chromosomes between male and female individuals.

Because LiRA calling requires linked heterozygous germline sites for optimal specificity
and false positive rate, it may limit its detection sensitivity in regions lacking phaseable
germline variants. Therefore, to more comprehensively assess SSNVs in known AD risk
genes (APP, PSEN1, PSENZ2 or APOE) and the tau-encoding gene MAPT, we considered
both the LiRA-called variants and the larger group of GATK calls that includes non-
phaseable parts of these genes. In both LiRA-called variants and GATK calls, we identified
no known pathogenic sSNVs in any of these AD-related genes. The question of clonal
somatic mutations in these and other AD risk genes also has been examined in other studies
by bulk gene sequencingl9.58:59,

Given the more even genome coverage and potentially fewer artefacts that are produced by
PTA“2, we used Single Cell ANalysis of SNVs (SCAN-SNV, v.20190ct)®, which does not
require phasing information from adjacent germline variants and thus has more detection
power in non-phaseable regions, to identify specific genomic sites of sSSNVs for mutational
signature and other downstream analyses.

Determining the evenness of single-cell genome amplification

The evenness of single-cell genome amplification was quantified using two different
methods (Supplementary Table 4). First, the MAPD metric was calculated as reported
previously®?, which is the median value across all absolute differences between logs-
transformed copy number ratio of neighbouring genome bins, and a higher MAPD score
represents greater unevenness of amplification. Binning, GC normalization, segmentation
and copy number estimation were performed to obtain copy number ratio per bin following
a previous single-cell copy number analysis protocol®2, and MAPD was then calculated

by taking a median of absolute difference between neighbouring bins. Second, considering
that MAPD cannot reflect the variance of the copy number ratio distribution within each
neuron, the CoV was also calculated by normalizing the standard deviation of absolute
difference between neighbouring bins by their mean. We also calculated a ‘power ratio’
metric, which is defined as the ratio between the LiRA-estimated genome-wide sSSNV
burden and the LiRA-called phaseable sSSNV count, reflecting the proportion of the genome
that has been adequately amplified for each single cell. Using mixed-effects modelling,

we measured the effect of these three metrics of genome evenness on sSNV burden in
well-characterized neurotypical PFC neurons. We then normalized the mutation burden in
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each cell and estimated the age and disease effects on sSSNV burden, as described in the
section ‘Mixed-effects modelling of somatic SNV burden’.

Mutational signature analysis

To discover mutational signatures of SSNVs, we calculated the frequency of mutations

in the 96-trinucleotide contexts for all control and AD neurons from the identified single-
neuron sSNVs (synthesized in Extended Data Fig. 5a for MDA, and in Extended Data

Fig. 8a for PTA). Mutation signatures in MDA-amplified neurons were detected by fitting
a non-negative matrix factorization (NMF)-based mutational signature framework83 using
MutationalPatterns (v.1.8.0)54 (Extended Data Fig. 5b). As we increased the number of
signatures, we estimated the signature stability and reconstruction error of each signature
and identified four signatures (N1, N2, N3 and N4) (Extended Data Fig. 5c) that maximize
the number of signatures while minimizing error (Extended Data Fig. 5b). We also used

a second signature derivation method, SignatureAnalyzer (v.1.1)19:65 which can infer the
optimal number of signatures from data by considering both model complexity and fitting
accuracy. Under default parameters with half-normal distribution for priors and reducing
effect of ultramutated samples, SignatureAnalyzer produced four signatures (W1-W4) with
the greatest likelihood, which are nearly identical to signatures N1-N4 that were identified
by MutationalPatterns (Extended Data Fig. 5c).

We observed a marked similarity between the de novo single-neuron signatures and
previously published single-neuron signatures® (Extended Data Fig. 5¢), particularly when
taking into account recently identified signatures of potential single-cell artefacts?4. Each
newly derived signature closely resembled a previously derived one: N4 with neuron
signature A, N2 with neuron signature C, N1 with neuron signature B and potential artefact
signature SBS scF, and N3 with SBS scE. To understand the underlying mechanisms for
the identified mutational signatures, we further performed NMF analysis to decompose our
signatures into the reported the COSMIC v3 signatures (https://cancer.sanger.ac.uk/cosmic/
signatures/; Extended Data Fig. 6a). We also performed NMF analysis to fit the COSMIC
signatures to our composite disease and control single-neuron mutational profiles, which is
shown in Extended Data Fig. 6b.

Given the near identity between the de novo and prior neuron signatures, we used the
prior signatures for our subsequent analyses. On the basis of the evidence that SBS scF
(highly similar to signature B) represents potential single-cell artefacts?4, we excluded the
contributions from these signatures in our assessment of genome-wide sSSNV burden for
each single neuron.

Similarly, we used MutationalPatterns to determine mutational signature contributions in
PTA-amplified neurons using the signatures we identified in MDA-amplified neurons. For
PTA-amplified single-neuron genomes, we did not identify significant contributions from
potential artefact signatures SBS scE and SBS scF, which prompted the filtering steps

for data from MDA-amplified genomes. Therefore, for PTA-amplified genomes, we report
unfiltered variant calling data.
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Filtering of LiRA-called somatic SNVs from MDA-amplified genomes of single neurons

Previous studies and our observations have suggested additional measures beyond LiRA

to further minimize experimental artefacts that may occur during MDA amplification of
single-cell genomes?4. Beginning with total LiRA-called sSSNVs (Extended Data Fig. 1a),
we undertook a series of analyses on our human neuron MDA scWGS data, examining

the influence of uneven genome amplification and the value of identification of specific
mutational signatures proposed as potential artefacts of single-cell genome amplification?4.
We found that cells with highly uneven genome amplification (MAPD > 2.0) show increased
LiRA-called sSNV counts (Extended Data Fig. 1c), including sSNVs attributable to the
potential artefact signature SBS scE, largely comprising GC>GT changes (Extended Data
Fig. 1d). We also observed that a small subset of neurons, only seen in AD, show an
‘ultramutated’ profile (more than 20,000 LiRA-called sSNVs; Extended Data Fig. 1a),
which is dominated by SBS scE (Extended Data Fig. 1d), suggesting that these amplified
genomes may show LiRA sSNV calls that do not represent biological double-stranded fixed
somatic mutations. The observed variants in these outlier cells may represent experimental
artefacts, including false calls due to errors occurring early in genome amplification.
Alternatively, the observed scE variants may also represent non-mutation biological events,
such as unrepaired single-strand damaged nucleotides, which could be misread as SSNVs
owing to strand dropout during genome amplification (Extended Data Fig. 1f). Although
examination of the potential biological component of this phenomenon may provide
important insights, we developed a computational filtering pipeline to generate a set of
filtered sSSNV calls, focusing our analysis on bona fide somatic mutations (Extended Data

Fig. 19).

Mixed-effects modelling of somatic SNV burden

To evaluate the relationships between somatic mutation and factors including age and
disease status, we performed linear mixed-effects regression modelling using the Ime4
(v.1.1-23) R package®, in a similar manner to our previous study®. Both genome-wide
sSNV burden and signature-specific SSNV burden were considered as continuous outcomes
in modelling. Disease status and other covariates of interest (for example, age and
measurement of amplification evenness) were modelled as fixed effects, and donor—tissue
groups were modelled as random effects, because neurons from a donor and each tissue type
may be correlated owing to shared biological environment. Linear mixed-effects models
were fitted using the maximum likelihood method, and Pvalues from a £test with the
Satterthwaite approximation were calculated for each fixed effect as implemented in the
ImerTest (v.3.1-2) R package8’. Of note, we also used the marginal generalized least-squared
method to fit the mixed-effects model, using the nlme (v.3.1-137) R package, which
produced substantially similar results.

To test the age effect of SSNV burden in PFC and hippocampus from neurotypical
individuals, we fitted the model yjix = (B+ y)x pj+ 1+ O+ ejjx, Where yj is the
sSNV burden in neuron & from brain region ;of donor / Bis the fixed-effect of age, y;
is the fixed-effect of brain region jon age indicating interaction terms of age and brain
region, p;is the age of donor / #is the number of sSSNVs at birth, 8;;is the random effect
of the donor-tissue pair following a normal distribution with mean 0 and variance z, and
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&jjk is the measurement error of each neuron also following a normal distribution with mean
0 and variance oy (Fig. 1d-f). To control for the potential confounding factor of genome
amplification evenness, we further introduced another covariate, & which represents the
neuron-specific measurement of amplification evenness (for example, MAPD, CoV and
power ratio) into the previous model, and re-estimated the age effect by subtracting the
neuron-specific contribution of the amplification unevenness coefficient from yj; (Extended
Data Fig. 3a—d). We found that PFC and hippocampus show no significant difference on the
age effect before and after controlling for amplification evenness (all 2> 0.25), therefore
we did not consider the brain region covariate in downstream modelling. In addition to the
genome-wide sSNV burden, we also analysed signature-specific sSSNVs with similar models

(Fig. 19).

To test the difference of sSSNV burden between AD and control neurons in an age-controlled
manner, we fitted the model y;i= Bx pj+ a;j+ u+ G+ ejj, where a;is the fixed-effect

of disease status (AD versus control), whereas yjix B, pi, 1 6jjand ejjiare defined as
previously (Fig. 1h). We further adjusted the sSSNV burden by considering the contribution
of amplification evenness & as we estimated above, and the difference of sSSNV burden
between AD and control neurons remained significant in both MDA- and PTA-amplified
neurons (Extended Data Figs. 3e-h, 8c—f).

To exclude the possibility that the observed sSNV burden increase in AD can be driven by
systemic differences in sample or sequencing quality metrics, we further introduced w;j into
the linear mixed-effects model: yju = Bx p;j+ a;j+ u+ Ojj+ ejjx+ wjj, wWhere wjj denotes
one of the potential confounding factors including sex, post-mortem interval, DNA quality
(DIN), sample storage time, sequencing depth, library insert size, proportion of read bases
with base quality at least 20, and number of heterozygous germline SNVs (an indicator of
genomic size of phaseable region). We confirmed that, in both MDA- and PTA-amplified
neurons, the increased sSNV burden in AD remained significant after controlling for each
(all P<0.01). For Fig. 1j, k, we also calculated AD-attributable excess somatic mutations
as the residual value for each single neuron after subtracting the age effect (8 x p;+ L)
estimated from neurotypical control neurons in prefrontal cortex.

To test whether sSSNV burden is associated with ApoE genotype in patients with AD, we fit
the model y/ jk= i+ O+ ejjx, where y jk s the age-corrected sSNV burden (yjx = 8% p))
for each neuron, and wj is the ApoE genotype of risk allele e4 under dominant, recessive and
additive genetic models. No significant association was observed in any of the three genetic
models in MDA- or PTA-amplified neurons (all #>0.21).

Gene expression analysis

To test whether somatic mutation is associated with gene expression level, we extracted the
brain PFC expression data from GTEx58. The per-gene expression value was normalized for
each individual after controlling for age and gender using DESeq2 (v.1.24.0)% and averaged
across all the individuals. Genes were then assigned to 10 deciles on the basis of their

PFC expression levels, and all SSNV density was calculated for each decile of genes after
normalizing by per-neuron sSNV detection power ratio and total gene length. To control

for potential bias due to trinucleotide context and the distribution of phaseable regions
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(areas with sufficient sequencing coverage and an adjacent heterozygous germline SNP),
we permuted the per-neuron sSNV list for 1,000 rounds by randomly shuffling the sSNVs
within the phaseable regions while keeping the trinucleotide context distribution the same.
We calculated the mean and standard deviation of the per-decile density in the permuted
dataset, and then measured the difference between observed and expected sSNV density for
each decile of AD or age-matched control group. This analysis included all brain regions

in each experiment (PFC and hippocampus for MDA-based scWGS; PFC for PTA-based
SCWGS).

We further performed an NMF-based mutational signature analysis for sSSNVs located in
each decile of genes, to estimate the relative contributions of signature A, signature C, SBS
scE and SBS scF for each decile. The sSNV density for each signature was calculated by
multiplexing the overall sSSNV density by each signature contribution.

Functional enrichment analysis

Analysis for functional enrichment of GO terms was performed using GOseq (v.1.34.1)7°,
For each RefSeq gene, we assigned a binary value ‘0’ or ‘1’ according to whether any
sSNVs are located in the corresponding gene. Of note, this analysis is based on the LiRA
output of sSSNVs (signature-based filtering cannot be applied to individual genes or variants),
and therefore this list may contain a small proportion of artefactual SSNVs. A probability
weighting function in GOseq was applied to control for potential gene length bias. The
Wallenius approximation method was used to test the enrichment of SSNVs, and the false
discovery rate (FDR) method was further applied for the correction of multiple hypothesis
testing. Genes without any GO annotation were ignored when calculating the total gene
count. GO terms with fewer than 10 hits were excluded to avoid ascertainment bias. Very
large GO terms with more than 1,000 genes were also ignored. All the GO terms with P<
0.01 in either AD or control neurons are listed in Supplementary Table 6.

Strand bias analysis

Mutations in transcribed regions of the genome may show a different density between
transcribed and untranscribed strands (so-called strand bias)’:72, resulting from asymmetric
mutagenesis and/or repair activity between strands. The transcriptional strands of genic
SSNVs were assigned on the basis of the UCSC TxDb annotations by MutationalPatterns®4,
Mutated bases (‘C’ or “T”) on the same strand as the gene direction were categorized

as ‘untranscribed’ and on the opposite strand as ‘transcribed’. Strand bias analysis was
performed on the set of mutations identified in PFC and hippocampal neurons together,

on the net increase (residual) of mutations in AD neurons over control neurons. Statistical
significance was determined by the Poisson test.

Location of sSNVs relative to genomic features

Annotations from ANNOVAR'3 were used to identify sSNVs falling in the following
positions: intergenic, upstream (within 1 kb region upstream of transcription start site), 5’
UTR, exonic (coding sequence, not including untranslated regions), 3" UTR, downstream
(within 1 kb region downstream of transcription start site), splicing (within intronic 2 bp
of a splicing junction), intronic. The functional interpretation was classified using four
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categories of SNV annotation: synonymous (SNV that does not cause an amino acid
change), nonsynonymous (SNV that causes an amino acid change, excluding stop-gain
and stoploss SNVs), stop-loss (nonsynonymous SNV that eliminates a stop codon), and
stop-gain (nonsynonymous SNV that creates a stop codon). For exonic and UTR sSNVSs,
we further grouped them into 10 deciles according to their position relative to the transcript
length. Similar to gene expression analysis, we used the 1,000 rounds of permutation within
phaseable regions by controlling for trinucleotide context distribution, and then calculated
the normalized difference (D) between observed (Aops) and expected (Neyp) SSNV counts as
below:

D= Nobs = Nexp

Nexp

Modelling the accumulation of gene knockouts in neurons

Many specific heterozygous mutations could damage neuronal function3°. Biallelic, exonic,
deleterious ‘gene knockout’ (KO) mutations in essential genes would be especially
damaging, such that there may be a threshold for the accumulation of such KO mutations
above which neuronal function would deteriorate. On the basis of the number of SSNVs we
identified in this report, we estimated the accumulation of gene KOs in cortical neurons,
using a method described previously®. In brief, we estimated the probability of a mutation
causing a gene knockout in a cell. In a diploid genome this corresponds to calculating the
probability that two or more damaging mutations fall on the same gene, given the number of
damaging mutations observed in a sample. This probabilistic problem can be modelled by an
approximation of the birthday problem:

2

—n
Pr(KO|n) = 1 — eno.of genes. Where

total deleterious variants
n =no.of sSNVs x - x 0.5,
total variants

where r7is the expected number of deleterious mutations for a given neuron. The
approximation used here is different from the one published previously® to allow for

more robust approximation when 0 < < 1. This model was further expanded to

include information about genes that are intolerant to heterozygous mutations, resulting

in haploinsufficiency and functional knockout. This is captured by the probability of loss-of-
function intolerance (pLI) metric, with genes with a high pLI score (pLI = 0.90) being less
tolerant’4. ExAC reported that 17% of all genes have such high pLI scores. We then used
this information for the final model, written a follows:

n = number of deleterious mutations

d; = {event that gene i has at least one mutation}
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#; = {event that gene i has a high pLI score}

D = {probability of a gene having a deleterious mutation }

Pr(KO|z, D,n) = 7% (1 = (1 = D)) + (1 = z)(1 —e~"D)

The average was taken across all cells per individual (7> 3 cells each, with specific

nshown in the Source Data for Fig. 2k) and 95% CI on those point estimates were
calculated for illustration purposes. A scale factor of 100 was used to convert probabilities
into percentages. To test whether there was a higher probability of obtaining a KO in AD
versus controls, we used generalized estimating equations with an exchangeable working
correlation structure to model the probabilities using a probit link function using the geepack
(v.1.3-1) R package. Namely, we fitted the model for each donor-tissue pairing k< and neuron
7as follows:

g(Kk, i) = ﬂage, ange, kit ﬁdiagnosistiagnosis
+ ﬁdiagnosis: age, kiXage, kiXdiagnosis, ki

with the correlation between two neurons in a donor-tissue pair defined as Corr(xy ; xx ) =
p, where ;i is the probability of a neuron having a KO mutation with the function g() being
the probit link function.

Immunofluorescence microscopy for 8-0xoG as a biomarker for neuron oxidative damage

To examine whole-cell oxidation status in individual neurons in post-mortem human brain,
we performed immunofluorescence staining and quantification for cellular 8-0xoG, the most
frequent oxidative nucleotide product caused by ROS, under conditions known as oxidative
stress. Formation of 8-0xoG is an important biomarker for oxidative status and oxidative
DNA damage lesions in the cell”>.

Fresh-frozen human brain PFC tissue was embedded in OCT medium and then cryo-
sectioned (20 um), with sections applied to uncharged glass slides and fixed for 10 min
using 4 °C Carnoy’s fixative (60% ethanol, 30% chloroform and 10% acetic acid). Slides
were washed in cold 1x PBS 3 times for 10 min each. A circle was drawn around

the tissue section using a grease pen and slides were placed into a humifying chamber.
Primary antibody solution consisted of: 0.2% Tween-20, rabbit anti-NeuN (1:1,000, Abcam
ab177487) and mouse anti-8-0xoG (1:500, Abcam ab206461, clone 2Q2311) in blocking
solution (10 mg mlI~1 bovine serum albumin, 0.02 % sterile normal donkey serum, 2 mg
mlI~1 glycine, 2 mg mI~1 lysine in 1x PBS). Primary antibody solution was applied, and
slides were sealed in a humidifying chamber and incubated at 4 °C overnight. Slides were
then washed with cold 1x PBS and secondary antibody solution was applied to each slide.
Secondary antibody solution: 0.2 % Tween-20, donkey anti-rabbit Alexa Fluor 488 (1:250,
Thermo Fisher Scientific A32790) and donkey anti-mouse Alexa Fluor 555 (1:250, Thermo
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Fisher Scientific A32773) in 1x PBS. Slides were sealed in a humidifying chamber and
incubated at 4 °C overnight. Slides were washed in 1x PBS then put in a dehydration series
consisting of 50% ethanol (5 min), 70% ethanol (3 min x 2), 95% ethanol (3 min x 2), 100%
ethanol (3 min x 2), and xylenes (5 min x 2). After the xylene step, tissue was permanently
mounted using DPX and a glass coverslip. Slides were allowed to dry overnight before
microscopy.

Two staining batches were performed for all cases, using an antibody master mix to reduce
staining differences between slides. A middle-aged individual (46-year-old woman; case
5773) was used to establish the fluorescence exposure setting for 8-oxoG and NeuN and
used for the imaging of all cases. Tissue was visualized by using a Zeiss Axio Observer 7
fluorescent microscope equipped with an X-cite Exacte 120 LEDboost lamp, Zeiss Axiocam
506 mono camera, Zen Blue 2.5 pro software and a 20x objective lens. AF488 (499ex/520
em) was paired with a 530/30 nm bandpass filter and AF555 (553ex/568em) was paired
with a 582/15 nm bandpass filter channel. The top and bottom of intracellular NeuN
immunoreactivity were used to establish zstack bounds using 0.24-um steps at 2,752 x
2,208 resolution, pixel size 4.54 ym x 4.54 um and 1 x 1 binning. Neuron cell body

8-0xoG immunofluorescence was quantified using Fiji (ImageJ) software. For each case,
n=100 total neurons were examined and quantified for 8-0xoG (50 neurons each from

two independent staining experiment batches per case). For each cell, a single zsection
was chosen representing the centre of the neuron in the Z-plane. A line was drawn around
the perimeter of the neuron cell body, as visualized by NeuN 488 channel. The mean grey
value (absorbance units, AU) was measured within the perimeter area in the 8-oxoG 555
channel and considered the “intracellular signal’. The neuron perimeter object was moved to
an area adjacent to the neuron with no intracellular NeuN or 8-0xoG immunoreactivity and
the mean grey value was measured. This value was considered ‘background signal’ and was
subtracted from the intracellular signal value. The final value was used to represent mean
8-0xoG immunofluorescence signal for the cell.

Reporting summary

Further information on research design is available in the Nature Research Reporting
Summary linked to this paper.
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Extended Data Fig. 1 |. Filtering of LiRA-called sSSNVs to minimize single-cell artefacts from
MDA amplification.

a, Total pre-filtering LiRA-called sSNV per genome for control and AD single neurons.
Single neuronal nuclei from prefrontal cortex (PFC) and hippocampal CA1 (HC) underwent
SCWGS (45X targeted average coverage). Genome-wide counts of sSSNV were determined
using linked-read analysis (LiRA). Per genome sSNV counts for all control and AD neurons
are shown here, prior to signature-based filtering. b, Total pre-filtering LiRA-called SSNV
per genome plotted against raw LiRA-called sSSNVs, an intermediate metric in the LiIRA
calling pipeline prior to power ratio adjustment for genome coverage and false positive rate.
¢, Single neuron sSNV counts in relation to coverage evenness of genome sequencing. Total
pre-filtering LiRA-called sSSNV counts from single neuronal nuclei are shown in relation to
median absolute pairwise difference (MAPD) scores for the coverage evenness of each cell.
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At very high MAPD scores (>2.0), sSSNV counts increase with MAPD, raising concern for
artefactual sSNV calls in these cells owing to uneven genome coverage. d, e, Using NMF
mutational signature analysis, the SSNV contribution was determined for two signatures
potentially representing single-cell amplification artefacts: SBS scE and SBS scF24. For
signature, the mutation type frequency for each trinucleotide context is shown above the
sSNV plot. SBS scF is composed of C>T changes, while SBS scE is characterized by

a particular subset of C>T, GC>GT. Signature SBS scE showed elevation in cells with
MAPD >2.0. Signature SBS scF shows a relationship between uneven amplification (high
MAPD) and SBS scF, perhaps owing to allele dropout causing single strand lesions to

be read as somatic mutations. A subset of AD neurons showed LiRA-called pre-filtering
sSNV counts >20,000/neuron and substantial component of potential artefact signature SBS
scE. These neurons may represent an agonal ‘ultramutated’ state, but were not included in
subsequent analyses owing to the abundance of potential artefact signature SBS scE (see
g). f, Schematic for potential generation of artefactual SSNV in scWGS owing to uneven
coverage. The scWGS LiRA platform calls sSSNVs that are linked by sequencing reads to
heterozygous germline single nucleotide polymorphisms (SNPs) (/eff). A single-stranded
lesion of DNA damage, such as oxidation or alkylation, is paired with an unmodified base
on the opposite genomic strand, such that LiRA would not call a sSSNV under conditions

of sufficiently even sequencing coverage (middle). However, if severe non-uniformity in
strand-specific amplification (strand dropout) occurred, the single-stranded DNA lesion (or
a polymerase error on one strand) could be erroneously called as an sSSNV (righi). For

this reason, severely uneven single-cell genome amplification could produce artefactual
LiRA sSNV calls. g, Analysis pipeline for minimization of potential artefacts of single-cell
genome amplification and sequencing. Using our observations and advances reported in
Petljak et al.24, we developed a computational pipeline to generate a set of higher-confidence
filtered sSSNV calls. This pipeline uses SNP-phased SNVs called by linked-read analysis
(LiRA), and applies 3 additional specific steps to the initial variant call set: 1) Removal

of single neurons which display widely uneven genome amplification, as indicated by
MAPD score >2.0, above which the number of SSNVs increases (see c), raising concern
for false positive variant calls due to uneven genome coverage; 2) Removal of single
neurons whose mutational profile is dominated by the potential artefact mutational signature
SBS scE (see d); and 3) Removal from each neuron the contribution of variants from

the potentially artefactual signatures SBS scE and SBS scF. These steps produce counts

of higher-confidence filtered sSSNVs from single neurons. Although mutational signatures
SBS scE and SBS scF have been previously reported as a potential artefact of single-cell
genome amplification, the signal does potentially carry biological information. However, in
this study we exclude these variants so as to minimize the influence of potential artefactual
SSNV calls, to focus our analysis on the higher-confidence filtered SSNVs.

Nature. Author manuscript; available in PMC 2022 October 20.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Miller et al.

Density

30
20

10

30
20

10

30
20

10

30
20

10

30
20

10

30
20

10

Page 24

control | | AD | | germline

vV<-0

il i kil

©<-0

aniuiabiblbonoutnl ki il

PRSI ——

anmiioiiientbl dusaleck bl

[ vt ]

o<1

ansinisiitiosinlll | censicuseil il

O<-1

LT

O E—

0%  25%  50%  75%  100% 0%  25%  50%  75%  100% 0%  25%  50%  75%  100%
Variant allele fraction

Extended Data Fig. 2 |. Single-cell variant calling identifies high-confidence sSNVs.
To assess the quality of the sSNVs identified from single-cell MDA-amplified WGS data,

we compared their variant allele fractions in control and AD neurons to those of phaseable
high-confidence heterozygous germline SNVs from the same neurons, shown for each
base change type. The distributions between somatic and germline SNVs are comparable,
indicating the validity of the somatic mutation calling method, as has been previously
reported for the LiRA calling method>23,
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Extended Data Fig. 3 |. SSNVs in neurotypical control and AD neurons, normalized by evenness
of genome amplification or LiRA caller power ratio.

To assess the sSSNV, as determined by the variant calling approach used in this study, we
plotted sSSNV counts from MDA-amplified single neurons against age, including using
sSNV counts that were normalized for two distinct measures of evenness of genome
coverage, median absolute pairwise difference (MAPD) and coefficient of variation (CoV).
We also normalized by the power ratio used in LiRA phasing-based sSNV detection (see
Methods). a—d, sSSNVs per genome for neurotypical control neurons, with mixed-effects
modelling trend lines for ageing. We observed a significant age-dependent increase of SSNV
burden in each analysis, with the slope for human pyramidal neurons ranging from 16.4
SSNV/yr to 21.1 sSNV/yr, depending on the method of adjustment for genome coverage
evenness. For analysis of PFC region cells alone, we observed a similar range of slopes by
this analysis: 16.8 SSNV/yr to 21.3 sSNV/yr. e-h, sSSNVs in AD compared to neurotypical
control neurons. Unadjusted for evenness (e, reproduced from Fig. 1h, AD neurons show
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a mean of 2672 (range 783-8990) sSNVSs, an excess of 971 over controls (P= 6.5 x
107, linear mixed model). f, Normalized for MAPD, AD neurons show a mean of 1582

(range 33-8366) sSNVs, an excess of 480 over controls (P=0.01, linear mixed model). g,
Normalized for CoV, AD neurons show a mean of 2264 (range 68-8861) SSNVs, an excess
of 831 over controls (P= 6.7 x 1072, linear mixed model). h, Normalized for power ratio,
AD neurons show a mean of 2015 (range 162-7892) sSNVs, an excess of 511 over controls
(P=7.2 x 1073, linear mixed model). In each analysis, AD neurons showed a significantly

greater number of SSNV compared to control neurons. Although some normalizations
may result in reduced detection of biological differences in AD specimens, we observed

that sSSNV differences are retained even after normalization, supporting a sSNV difference

between AD and control neurons.
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Extended Data Fig. 4 |. Distribution of sSSNVs in relation to gene position comparing AD and
age-matched control neurons.

a, SSNVs per neuron across different categories of genomic regions, based on position
relative to gene structure. b, Proportional distribution of sSSNVs in AD and control cases
across different categories of genomic regions. Upstream and downstream were defined
as <1 kb genomic regions from the transcription start and end sites, respectively. Each
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proportion is normalized by the expected proportion after controlling for trinucleotide
context of phaseable regions. ¢, Proportional distribution of sSSNVs relative to gene transcript

length. The proportions for control or AD sSNVs were normalized by the expected

proportion after controlling for trinucleotide context of phaseable regions. For each set,
mean £ SEM is shown. For b, ¢, Pvalue is shown for the observation showing statistically
significant difference between AD and control (two-tailed t-test). AD neurons show a
trend of excess over controls in SSNVs in upstream positions (not surviving Bonferroni
correction). Data in this figure were obtained by MDA amplification of single genomes of

neurons.
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Extended Data Fig. 5 |. Somatic mutation trinucleotide context profiles and signature derivation
in MDA-amplified single-neuron genomes.

a, Trinucleotide context somatic mutation profiles in AD and control neurons. Mutations
called by LiRA are shown by base substitution change (bar colour), separated for each of
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the 16 possible trinucleotide contexts for each substitution (96 total trinucleotide contexts).
For each brain region profiled, the aggregate is shown for AD cases, neurotypical controls,
and the difference (residual of cases mutations minus control mutations). b, Signature
metrics for de novo mutational signature derivation from neurons in this study. Using the
frequency of sSSNV mutations in their trinucleotide context for all control and AD neurons,
we fitted mutational signatures with a NMF-based framework. We identified four signatures,
N1-N4, that maximize the cophenetic of the decomposition8. ¢, sSSNV mutational signatures
evaluated in this study. We performed de novo mutational signature generation using NMF
(MutationalPatterns and SignatureAnalyzer) on the set of scWGS data from single neurons
from AD and neurotypical controls, which each produced 4 highly similar signatures by

best fit. Previously published analysis of single neurons (Lodato et al.)® during ageing
produced 3 signatures: A, B, and C. A recently published study of cultured cells (Petljak et
al.)?* identified signatures thought to represent artefacts of scWGS, including SBS scE and
SBS scF. d, Variation between neurons of mutational signature contributions. We performed
linear regression for signature contribution with respect to age and disease status. The
residual signature contribution of each neuron for signature A and signature C is shown here,
for each disease group. Also shown are the mean (bar) * standard deviation (boxes), with

the range (whisker lines). In addition to the neurotypical control and AD neurons reported

in this manuscript, we also performed this analysis on previously reported single human
neuron data for two NER-deficiency diseases: Cockayne syndrome (CS) and xeroderma
pigmentosum (XP)°. Because only PFC was studied for CS and XP, only the control and

AD neurons from PFC were used for this analysis. For each disease group, signature C
showed a greater standard deviation than signature A; standard deviation ratios between
signatures C and A are as follows: 1.2 (control), 1.2 (AD), 3.2 (CS), and 1.1 (XP). Data were
obtained from MDA amplification of single neuron genomes. Boxplots show mean + SD,
with whiskers denoting minima and maxima.
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Extended Data Fig. 6 |. COSMIC mutational signature contributions to single-neuron signatures
and disease-related mutational patterns.

a, The set of trinucleotide contexts in single neuron signatures derived in the prior study
(signatures A and C)®, along with single neuron signatures derived de novo from single
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AD and control neurons (signatures N4 and N2 derived using MutationalPatterns, and
signatures W3 and W2 derived using SignatureAnalyzer) were analysed for contributions
by COSMIC v3 single base substitution mutational signatures by NMF. The matching prior
and de novo signatures show highly similar COSMIC signature contributions. b, The set
of mutation trinucleotide contexts present in AD and control neuron genomes amplified
by MDA, as well as the matrix of mutations obtained by subtracting control from AD

(AD residual), were analysed for contributions by COSMIC signatures. Multiple COSMIC
signatures identified here, many of which also contribute to signature C®, are associated
with transcription-coupled nucleotide excision repair at particular damaged nucleotides
with specific resultant base changes, including: SBS8 (guanine damage, C>A mutations),
SBS22 (adenine damage, T>A mutations), SBS12 (adenine damage, T>C mutations), and
SBS19 (guanine damage, C>T mutations). Other signatures have been associated with
deficiencies of separate DNA repair processes: SBS6 (mismatch repair) and SBS30 (base
excision repair). SBS5, associated with ageing, contributes significantly to the control and
AD samples, but not to the AD residual mutations.
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Extended Data Fig. 7 |. Immunofluorescent detection of nucleotide oxidation in neurons.
Immunofluorescence was performed on post-mortem human brain prefrontal cortex. NeuN

(AF488) was used to label neurons and 8-0xoG (AF555) used to label oxidized guanine
nucleotides. a, For each case sample, in a full microscopic field of up to 100 NeuN+
neurons, 8-0xoG signal was quantified per neuron. Here, each data point represents the
8-0x0G signal from one neuron, with mean and SEM shown in black for each case.

Figure 2f shows mean 8-0xoG values of each case in relation to age and disease status.

b, Representative microscopy images (turquoise or purple boxes) are shown for neurotypical
control and AD samples from a. n = 100 total neurons examined (50 neurons each from two
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independent staining experiment batches per case). NeuN+ neurons are shown in green and
8-0x0G in greyscale or magenta. Scale bars represent 60 pum.
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Extended Data Fig. 8 |. Features of somatic mutations in single neurons assessed by PTA.
a, Trinucleotide somatic mutation spectra of cells or bulk samples studied by various

methods were compared. For PTA-amplified single neurons, the aggregate of mutations

is shown for AD cases, age-matched neurotypical controls, and the residual (net increase
of case mutations over control mutations). Mutational spectra from other methods include
NanoSeg-studied bulk samples from AD or controls and META-CS single neuron data for
double-stranded mutations or single-stranded DNA lesions. Mutations are shown by base
substitution change (bar colour). Of note, single-stranded DNA lesions show a distinct
profile from mutations detected by PTA, NanoSeq, and META-CS. b, The spectra of
mutations detected in PTA-amplified neurons (AD, control, and AD residual) and from
other published methods were analysed for contributions by COSMIC cancer signatures.
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Elements of COSMIC signatures identified in the AD residual mutation set, including SBSS8,
also contribute to signature C°. Of note, single-stranded DNA lesions show a distinct profile
from mutations detected by PTA, NanoSeq, and META-CS. c—f, sSSNV detected using PTA

in AD and neurotypical control neurons, normalized by evenness of genome amplification
or LiRA caller power ratio. ¢, Total SSNVs per genome plotted against age (uncorrected,
reproduced here from Fig. 3a for comparison). AD neurons show a mean of 1419 (range
514-2157) sSNVs, an excess of 196 over controls (P= 3.9 x 1074, linear mixed model).

d, MAPD-normalized sSNVs per genome, from which AD neurons show a mean of 1703
(range 814-2748) sSNVs, an excess of 453 over controls (P= 2.7 x 1075, linear mixed
model). e, CoV-normalized sSNVs per genome, from which AD neurons show a mean of
1440 (range 527-2255) sSNVs, an excess of 189 over controls (P= 5.3 x 1074, linear mixed
model). f, Power-normalized sSNVs per genome, from which AD neurons show a mean

of 1423 (range 517-2166) sSNVs, an excess of 198 over controls (P= 3.8 x 1073, linear
mixed model). In each analysis, AD neurons showed a significantly greater number of SSNV
compared to control neurons.

Extended Data Table 1 |

Studies of sSNV rates and signatures during ageing in various human cell types®-7.76-80

Study Tissue/cell Method sSNV increase Mutational
per year per signatures of
cell aging cells
Blokzijl et al. adult stem cells of small WGS of clonal organoid 35-40 COsSMIC
20166 intestine, colon, liver cultures derived from Signature 5
primary multipotent cells
Hoang et al. bulk brain (frontal dilution followed by ~33 (in bulk
20167° cortex), colon, kidney WGS (BotSeqS) brain)
Lodato efal. 20185  neurons (prefrontal single-cell WGS ~23 COsSMIC
cortex) Signature 5
Osorio etal. 2018’  hematopoietic stem cells WGS on clonal cultures 14 COsSMIC
Signature 5
Franco et al. skeletal muscle resident WGS on /in vitro clonally 13 COsSMIC
201877 progenitor/stem (satellite)  expanded single cells Signatures 1,5,8
cells
Zhang et al. 2019’8 B lymphocytes single cell WGS ~26 COsMIC
Signatures 1,5
Lee-Six et al. colon (crypts) WGS of colorectal crypts, >40 COSMIC SBS5,
201979 to represent clones from SBS1
colorectal stem cells
Franco et al. kidney tubules, WGS on /n vitro clonally ~55 (KT2) COSMIC SBS1,
201980 epidermis, subcutaneous expanded single cells ~12 (KT1) SBS3/8, SBS5,
adipose, visceral adipose ~20 (adipose) SBS40
This study neurons (prefrontal single-cell WGS 16-21 COSMIC SBS5

cortex and CA1
hippocampus)

Of note, COSMIC v3 single base substitution signatures SBS1 and SBS5 are similar and analogous to v2 signatures 1 and
5, respectively (https://cancer.sanger.ac.uk/cosmic/signatures). The table refers to several previous studies.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Somatic mutations in single neurons in control individuals and individuals with AD.
a, Experimental outline for scWGS. From human brain, large neurons were isolated and

their genomes were amplified, sequenced, and analysed for sSSNV. FANS, fluorescence-
activated nuclear sorting. b, FANS using AF488-conjugated anti-NeuN antibodies to label
candidate neurons for separation from glia and other cell types. Boxes show the full
population of DAPI* diploid cellular nuclei (blue dashed box); the overall population of
NeuN* nuclei (pink dashed box); and the large NeuN™* subset (black box; the subject of
this study). ¢, Single-nucleus transcriptomic profiling of each population. Individual cells
are plotted according to #distributed stochastic neighbour embedding (~SNE) coordinates,
and clusters of 50 cells or more are annotated®® and labelled by colour, with a pie

chart of the relative abundance of excitatory neurons, inhibitory neurons and glia in

each population. OPC, oligodendrocyte precursor cell. d-I, sSSNVs identified using MDA
genome amplification. d—f, SSNVs in neurotypical control neurons. Data points represent
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single neurons; trend lines show linear mixed models (PFC: A=3.3 x 1077, /2 = 0.63;
hippocampus (HC): = 0.16, /2 = 0.18). g, Contribution of ageing signature A to sSNVs
(P=1.67 x 10710, /2 = 0.68, linear mixed model). h, SSNVs as a function of age in
neurotypical control individuals and individuals with AD (linear mixed model trend lines:
blue, control: P=6.8 x 107, /2 =0.51; red, AD: P=0.46, R2 = 0.01). AD contributes

a significant excess of sSSNVs in neurons relative to normal ageing (= 6.5 x 1072, linear
mixed model). i, AD neurons show increased sSNVs compared with age-matched (over 50
years old) control neurons (874 sSNVs per neuron, = 7.1 x 107>, two-tailed Wilcoxon
test). j, k, Excess sSSNVs attributable to AD in the PFC (j) and the hippocampus (k). The
dashed blue line shows sSNVs attributable to age (zero excess). For i-k, black bars show
mean + s.e.m. |, Circos plot showing the wide distribution of sSSNVs across the genome in
AD neurons.

Nature. Author manuscript; available in PMC 2022 October 20.
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Fig. 2 |. Somatic mutational signatures and patterns in AD neurons by MDA.
a, Somatic mutational signatures identified by NMF®. b, ¢, Signature A contribution by age

(b; AD excess 418, P=3.1 x 1074, linear mixed model) and in individuals with AD versus
age-matched control individuals (c; 27% increase in AD, P=0.10, two-tailed Wilcoxon
test). d, e, Signature C contribution by age (d: AD excess 549, P= 1.4 x 1073, linear
mixed model) and in individuals with AD versus control individuals (e; 104% increase

in AD, P=8.7 x 1078, two-tailed Wilcoxon test). f, Oxidative damage in AD neurons,
using 8-o0xoG immunofluorescence. Data points represent mean absorbance units (AU) +
s.e.m. of 7=100 neurons per case in PFC (full data in Extended Data Fig. 7). Trend

lines show linear mixed-effects regression (AD versus control: = 1.2 x 1075). Inset shows
representative immunofluorescence images; neurons (NeuN; green) and oxidized guanine
(8-0x0G; magenta). Scale bars, 60 pm. g, Genomic sSNV density as a function of gene
expression in the brain. Diamonds represent mean relative SSNV density in single neurons
(black vertical lines show s.d., 7= 1,000 permutations). Overall trend line is shown in
black (/2 and Pvalue, Pearson correlation); 95% confidence interval (Cl) in grey; and

Nature. Author manuscript; available in PMC 2022 October 20.
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AD and control trend lines in colours. h, GO analysis of genes mutated in single neurons.
i, SSNVs by DNA strand template status. SSNVs in transcribed regions exhibit a strand
bias in the excess mutations in AD neurons, which is most pronounced in C>A variants
(*P=0.017, two-tailed Poisson test). j, Coding mutation subtypes, in which increased
nonsynonymous mutations in AD (P = 1.6 x 1072, two-tailed test) increase the propensity
for presentation of neoantigen peptides. k, SSNVs that result in gene knockout cells. Model
for the abundance of neurons with gene inactivation, affecting function. Circles represent
mean for each individual, (n7> 3 neurons each, see Source Data), with 95% ClI. c, e, j, Data
are mean £ s.e.m.

Nature. Author manuscript; available in PMC 2022 October 20.
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Fig. 3 |. Profile of somatic mutations in single AD neurons by PTA.
Single-neuronal nuclei were isolated from control and AD prefrontal cortex and subjected to

PTA whole-genome amplification for scWGS. a, sSSNVs as a function of age in neurotypical
control individuals (blue) and individuals with AD (red). Blue and red lines show linear
mixed model trend lines for each group (control: A= 2.0 x 10716, /2 = 0.90; AD: P=

6.57 x 1077, R2 = 0.59). By PTA, AD contributes a significant excess of sSSNVs (196 per
genome) in neurons compared to the normal ageing trend line (P= 3.9 x 1074, linear mixed
model). b, ¢, PTA-called sSNVs by mutational signature in each individual neuron. SSNV
contributions are shown as a function of age for signature A (b; AD versus control P=

0.04, linear mixed model) and signature C (c; AD versus control £=5.3 x 1073, linear

mixed model). d, Transcriptional influence on somatic mutation in neurons profiled by PTA.
Genes with higher expression levels show increased overall and signature A density and
decreased signature C density. Data points represent mean sSNV density relative to expected
density based on the mutation trinucleotide context, with black vertical lines showing s.e.m.
Controls represent age-matched (over 50 years old) neurotypical neurons. Overall trend line
is shown in black; 95% CI in grey; and separate AD and control trend lines in colours.

RZ and Pvalues are shown for Pearson correlation. e, SSNVs by DNA strand template
status. SSNVs in transcribed regions exhibit a strand bias in the excess mutations in AD
neurons. For each nucleotide change, the proportional contributions of the transcribed and
the untranscribed strand are shown. The strand bias ratio data in PTA-amplified neuron data
showed a similar trend to that seen in MDA-amplified neurons.
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Fig. 4 |. Model of the role of somatic mutations in AD pathogenesis.
Amyloid-B(AB) oligomers initiate a cascade of events, including the conversion of

tau to neurofibrillary tangles and the accumulation of ROS. After DNA damage by
ROS or other mutagens, somatic mutations develop with characteristic features of
signature C. NER affects the strand and gene distribution of somatic mutations, and
rare base misincorporation during repair may also have a role in the progression
from DNA damage to mutation. These somatic mutations stand to increase cellular
vulnerabilitybymechanismsincludinggeneinactivationandneoantigenpresentation.
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