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Abstract

Dementia in Alzheimer’s disease progresses alongside neurodegeneration1–4, but the specific 

events that cause neuronal dysfunction and death remain poorly understood. During normal 

ageing, neurons progressively accumulate somatic mutations5 at rates similar to those of dividing 

cells6,7 which suggests that genetic factors, environmental exposures or disease states might 

influence this accumulation5. Here we analysed single-cell whole-genome sequencing data from 

319 neurons from the prefrontal cortex and hippocampus of individuals with Alzheimer’s 

disease and neurotypical control individuals. We found that somatic DNA alterations increase 

in individuals with Alzheimer’s disease, with distinct molecular patterns. Normal neurons 

accumulate mutations primarily in an age-related pattern (signature A), which closely resembles 

‘clock-like’ mutational signatures that have been previously described in healthy and cancerous 
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cells6–10. In neurons affected by Alzheimer’s disease, additional DNA alterations are driven 

by distinct processes (signature C) that highlight C>A and other specific nucleotide changes. 

These changes potentially implicate nucleotide oxidation4,11, which we show is increased in 

Alzheimer’s-disease-affected neurons in situ. Expressed genes exhibit signature-specific damage, 

and mutations show a transcriptional strand bias, which suggests that transcription-coupled 

nucleotide excision repair has a role in the generation of mutations. The alterations in Alzheimer’s 

disease affect coding exons and are predicted to create dysfunctional genetic knockout cells 

and proteostatic stress. Our results suggest that known pathogenic mechanisms in Alzheimer’s 

disease may lead to genomic damage to neurons that can progressively impair function. The 

aberrant accumulation of DNA alterations in neurodegeneration provides insight into the cascade 

of molecular and cellular events that occurs in the development of Alzheimer’s disease.

Alzheimer’s disease (AD) is a common, progressive and fatal age-associated 

neurodegenerative disorder that is characterized by neuron loss and stereotypic deposition 

of misfolded proteins2. The formation of oligomers of amyloid-β may initiate disease 

pathogenesis, triggering a cascade of events that include the development of tau 

neurofibrillary tangles and oxidative stress1. Tau deposition, which correlates most closely 

with clinical features, progresses topographically over the course of illness from medial 

temporal lobe structures to the neocortex, as delineated in the Braak staging system3. 

Despite substantial mechanistic knowledge of the formation of misfolded proteins, the core 

basis of cellular dysfunction in AD is not well understood.

Somatic mutations occur in healthy human tissues12–14, including post-mitotic neurons15,16, 

in which they accumulate during ageing in a process known as genosenium5,17. Analysis 

of somatic mutational signatures can identify the mutagenic forces responsible, including 

ultraviolet irradiation in sun-exposed cancers and tobacco-associated polycyclic aromatic 

hydrocarbons in lung cancers8,18. In human neurons, mutational signature analysis has 

revealed that somatic single-nucleotide variants (sSNVs) result from multiple mutagenic 

forces, potentially including the oxidation of DNA nucleotides5. AD shows increased 

oxidative stress and damaged nucleotides4, but the extent to which these damaged 

nucleotides are eliminated by manifold DNA repair processes, and whether they result 

in persistent DNA mutations, producing permanent effects on genome structure or 

transcription, are not known. Bulk methods, including targeted gene sequencing19 and 

single-molecule sequencing20, have profiled aspects of AD somatic genetics, but AD has 

not to our knowledge been examined at the level of individual cellular genomes. Here, to 

test the hypothesis that specific mechanisms of genomic damage affect AD neurons, we 

applied single-cell whole-genome sequencing (scWGS) to single neurons from the brains of 

individuals with AD and neurotypical control individuals to compare the number, genomic 

locations and classes of somatic mutations that are associated with AD.

Somatic mutations in neurons during ageing

We performed scWGS on pyramidal neurons isolated from the brains of individuals with 

AD and neurotypical control individuals (Fig. 1a, Supplementary Tables 1, 2). We stained 

for the pan-neuronal marker NeuN to mark neurons, and further gated only the largest 
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NeuN-positive nuclei (Fig. 1b). This separates, to a purity greater than 99%, the nuclei of 

pyramidal, excitatory neurons—which are preferentially vulnerable to both neurofibrillary 

tangle formation21 and cell death in AD22—from those of glia and smaller, inhibitory 

neurons (Fig. 1c). Here, scWGS involves single-cell alkaline lysis on ice, whole-genome 

amplification using multiple displacement amplification (MDA) and then several screening 

and quality control steps, so that only genomes that are well amplified are finally sequenced. 

In total, using MDA, we analysed 91 neurons from 8 cases of AD and 159 neurons 

from 18 neurotypical control individuals (Table 1). We identified sSNVs using the LiRA 

pipeline23, which uses linkage to germline haplotypes to increase specificity and estimates 

the genome-wide somatic mutation rate by accounting for the cell-specific proportion of 

phaseable linked sites and false positive rate. For these MDA-amplified single-cell genomes, 

we performed additional filtration steps based on previously reported patterns of nucleotide 

substitution attributed to artefacts of genome amplification by MDA24 (see Methods, 

Extended Data Fig. 1). This set of filtered sSNV calls showed a variant allele fraction 

distribution that was very similar to that of germline heterozygous SNVs in single-cell 

data (Extended Data Fig. 2), which allowed us to confirm that, in neurotypical individuals, 

neuronal sSNVs increased with age at a rate of 16–21 sSNVs per year (Fig. 1d, Extended 

Data Fig. 3a–d)—consistent with previous work on neurons5,20,25. Studies using clonally 

expanded cells from other human tissues have shown comparable yearly increases in sSNVs, 

ranging from 13 to 55 sSNVs per year, with higher rates in more rapidly dividing cell types 

(Extended Data Table 1).

We next examined the accumulation of sSNVs in pyramidal neurons located in the CA1 

subfield of Ammon’s horn of the normal hippocampus, as this is a critical region in 

AD and other diseases. Hippocampal CA1 neurons from individuals who died with no 

neurological diagnosis showed a trend towards the accumulation of sSNVs with age (Fig. 

1e), which was not significantly different from the increase in sSNVs seen in prefrontal 

cortex (PFC) neurons from neurotypical control individuals (P = 0.72, linear mixed-effects 

regression model (linear mixed model); overlay in Fig. 1f). When considering the PFC and 

the hippocampus together (Extended Data Fig. 3a–d), this set of single cells highlights 

a common pattern of sSNV accumulation in the pyramidal neurons of neurotypical 

individuals.

Large-scale DNA sequencing studies in cancer have identified patterns and contexts of 

nucleotide substitution, termed ‘signatures’8, which often reveal mutagenic forces. In 

normal PFC neurons, the age-related increase in mutations is driven mainly by certain 

C>T and T>C changes, termed signature A5. This signature resembles the age-related 

‘clock-like’ signature that is observed in other normal cells as well as in essentially all 

cancer cells9, designated as signature SBS5 in the COSMIC mutational signature database 

(https://cancer.sanger.ac.uk/cosmic/signatures). Signature decomposition analysis of sSNVs 

from the composite dataset of PFC and hippocampal pyramidal neurons showed that the 

contribution of signature A in each neuron increased with age, at a rate of 15.0 ± 1.2 sSNVs 

gained per year (Fig. 1g). This age-related increase in signature A mutations is similar for 

PFC and hippocampal pyramidal neurons (P = 0.18, linear mixed model), and is the major 

driver of age-related sSNV accumulation in normal neurons. Despite their universal presence 

in many cell types, and their accumulation in nondividing cells, the cellular mechanism 
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of such clock-like mutations is not clear. Signature SBS5 exhibits a transcriptional strand 

bias9, which suggests that events leading to these mutations are associated with RNA 

transcription. During transcription, the double helix is unwound, exposing single DNA 

strands to cytosine and thymine deamination17, which are subject to transcription-coupled 

nucleotide excision repair (TC-NER). Transcription may therefore sensitize expressed loci to 

somatic mutagenesis through transcription-associated damage or ineffective repair.

Somatic mutations in AD

We next assessed the burden of sSNVs in neurons from the brains of eight individuals with 

AD and found that AD neurons showed significantly more called sSNVs than expected on 

the basis of age (P = 6.5 × 10−5, linear mixed model; Fig. 1h). This excess was variable 

between neurons, mirroring the variable presence of AD pathology within neurons of a 

given brain region. AD neurons also showed a significant increase in called sSNVs in 

MDA experiments when directly compared to age-matched neurotypical control neurons (P 
= 7.1 × 10−5, two-tailed Wilcoxon test; Fig. 1i). This increase remained after controlling 

for potential covariates including post-mortem interval, sample storage time, sample DNA 

quality, sequencing depth, sequencing quality score, library insert size and number of 

heterozygous germline SNVs, as well as technical metrics of scWGS evenness (see 

Methods, Extended Data Fig. 3e–h). In the PFC, we observed significant gains in sSNVs 

in AD relative to normal ageing in seven out of eight individual cases of AD (Fig. 1j). 

Several of the genomes with the highest sSNV counts in AD came from the hippocampus, 

in which five of eight cases also showed significant increases in sSNVs compared with 

normal ageing (Fig. 1k). However, in three cases, the assayed hippocampal neurons did 

not show a detectable increase in the handful of cells assayed. On the basis of tau (Braak) 

and amyloid-β (Consortium to Establish a Registry for Alzheimer’s Disease; CERAD) 

neuropathological staging, hippocampal pathology appears to precede PFC damage, and the 

hippocampus of these late-stage cases invariably showed widespread neuronal loss as well 

(not shown). Thus, it is possible that highly mutated neurons are lost before death and 

therefore not possible to assay here, so our results may reflect resilient neurons that have 

survived despite advanced AD22. These results show that neurons in AD contain hundreds 

of additional sSNVs beyond that expected for their age, indicating that the disease process 

produces a level of genomic damage that is on par with more than a decade of normal 

accumulation of sSNVs.

The somatic mutations identified in AD neurons are pervasively distributed across the 

genome (Fig. 1l), with a trend towards an excess in regions at least 1 kb upstream from 

the transcription start site—where DNA damage has been implicated during neuronal gene 

transcription26—that does not survive Bonferroni correction (P = 0.045, two-tailed t-test; 

Extended Data Fig. 4). The broad genomic distribution of variants suggests that, rather than 

constituting a specific initial event in disease pathogenesis, somatic mutations are more 

likely to be secondary, resulting from other events that initiate AD and instigate mutagenic 

processes. Specifically, we did not observe somatic instances of known pathogenic 

mutations in classic germline AD risk genes (APP, PSEN1, PSEN2 and APOE), concordant 

with a recent report27, nor did we observe somatic increases in copy number of the APP 
gene, contrary to a previous study28 and as we reported in detail separately29. We also 
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observed no consistent effect of an individual’s ApoE status or sex on the accumulation of 

sSNVs.

Mutational signature analysis in AD neurons

We next performed mutational signature analysis to identify whether specific processes 

cause somatic alterations in AD neurons. De novo signature decomposition revealed 

mutational signatures concordant with those previously reported in human neurons5 

(Extended Data Fig. 5). We focused our analysis on neuronal signatures A and C (Fig. 

2a), as signature B contains clonal developmental mutations, but is also where artefactual 

C>T mutations created by MDA amplification aggregate24. Signature A mutations increase 

with age in all samples, which suggests that this clock-like signature (that is most similar 

to the clock-like signature SBS5 from cancer5) constitutes an inherent feature of genome 

ageing. Signature A also shows a marginal increase in AD relative to age-matched controls 

(Fig. 2b, c), which does not reach statistical significance in these MDA experiments, but 

suggests that these mutational mechanisms could be accentuated in the setting of disease. On 

the other hand, AD neurons show a pronounced increase in signature C compared to controls 

(Fig. 2d, e), which accounts for most of the observed excess in alterations. The signature 

C burden shows more variation between neurons than that for signature A (Extended Data 

Fig. 5d), which suggests that signature C could result from irregular ‘calamitous’ events, in 

contrast to the uniform ageing represented in signature A.

Signature C includes C>A substitutions, which have previously been associated with 

oxidative damage to guanine nucleotides18. Signature C also has a significant contribution 

from the cancer-associated signature SBS8 (ref. 5) (Extended Data Fig. 6a). This signature 

is increased in stem cells with disrupted TC-NER10,30, and we have observed an increase in 

signature C in single human neurons deficient in TC-NER owing to ERCC6 mutations, and 

in neurons deficient for global NER owing to XPA or XPD mutations5. Overlap between AD 

sSNVs and other cancer-derived signatures also suggests a potential role for NER in T>A, 

T>C and C>T mutations (Extended Data Fig. 6b). Signature C has been reported in normal 

neurons at low but highly variable levels5, with some accumulation with age in the normal 

PFC, and a similar signature has also been reported in ageing stem cells from the liver and 

intestine6. Given that increased reactive oxygen species (ROS) and oxidative nucleic acid 

lesions have been reported in AD4,31–33, a plausible mechanism for the accumulation of 

signature C in AD is that increased oxidative damage overwhelms NER, which could also be 

attenuated in AD.

The set of excess mutations in individuals with AD, represented as the trinucleotide 

spectrum of residual mutations when subtracting those present in control individuals, also 

includes contributions from the cancer signature SBS6 (Extended Data Fig. 6b), which is 

associated with defective DNA mismatch repair, raising the possibility that other repair 

mechanisms may further contribute to the generation of somatic mutations in AD neurons.
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Oxidative damage in AD neurons

Because our mutational signature analysis suggested that DNA oxidation—previously 

observed in bulk analyses of brains from individuals with AD4,11—might contribute 

to the excess sSNVs in AD, we directly examined nucleotide oxidative damage in 

individual neurons. The most frequent oxidized nucleotide lesion due to oxidative stress 

is 8-oxoguanine (8-oxoG), and this is therefore used as a biomarker for cellular oxidative 

status and DNA damage. Immunofluorescence microscopy using an antibody targeting 

8-oxoG showed that there were significantly higher levels of 8-oxoG in AD neurons than in 

neurotypical control neurons (P = 1.2 × 10−6, linear mixed model; Fig. 2f, Extended Data 

Fig. 7), indicating that increased levels of oxidative nucleotide damage contribute to C>A 

changes and to the increase in signature C in AD neurons.

Transcriptional influence on somatic SNVs

Mutations in genes that are critical for neuronal function and survival could directly affect 

cellular fitness. Despite the preferential repair of transcribed genes in human neurons34, 

the burden of sSNVs in transcribed regions of the genome correlated with gene expression 

levels in the brain (P = 3.1 × 10−3, Pearson correlation; Fig. 2g). When this observation 

was separated by signature, with increased expression we observed increased signature A 

mutations (P = 5.0 × 10−5, Pearson correlation), but decreased signature C mutations (P = 

6.5 × 10−3, Pearson correlation). These findings provide further support for the hypothesis 

that ageing-associated signature A and AD-associated signature C arise from different 

mechanisms. For signature A, events during transcription appear to have a role in generating 

mutations, whereas signature C correlates inversely with expression and therefore may be 

more effectively repaired during transcription, including by TC-NER35.

Gene Ontology (GO) analysis of loci mutated in AD and control neurons revealed 

that genes involved in neuronal function were enriched for sSNVs (Fig. 2h). When 

considered together with the expression–sSNV findings, AD neurons show an influence 

of transcriptional processes on mutation generation. Such a transcriptional influence can 

produce an asymmetric pattern of mutations on the paired DNA strands. We therefore 

distinguished the sSNV sites by template status, between transcribed template strands and 

untranscribed strands (Fig. 2i). We found a significant strand bias for C>A mutations on 

the transcribed strand, along with a modest strand bias for C>T and T>C, providing further 

evidence that errors in transcription-related mechanisms have a role in the generation of 

sSNVs in AD neurons. As one example, an unrepaired oxidized guanine nucleotide, 8-oxoG, 

on an untranscribed strand could become a G>T mutation, which would be classified as 

a C>A mutation on the transcribed strand. In addition to the apparent protective role of 

NER processes against somatic mutation, the involvement of NER in signature C mutations 

also presents a potential mechanism for the accumulation of mutations in non-cycling cells, 

as NER involves the removal of an approximately 29-bp sequence by an exonuclease, 

followed by the replication of those 29 bp from the remaining DNA strand36; this allows for 

replication errors during repair if the template strand is also damaged.
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Potential consequences of somatic mutations in AD

Somatic mutation or single-stranded damage that alters amino acids can contribute 

to neuronal dysfunction or loss by many mechanisms, including direct impairment of 

transcription, alterations in protein stability or creation of neoantigens. In protein-coding 

genes, AD neurons show more nonsynonymous mutations than age-matched control neurons 

(Fig. 2j), which has the potential to impair dosage-sensitive genes, or to create neoantigen 

peptides that could elicit T lymphocyte activation, immune attack and consequent cellular 

damage. Observations of clonal CD8+ T cells in cerebrospinal fluid and brain tissue in 

AD37 suggest that such autoactivation could be relevant in AD. Moreover, as somatic 

alterations accumulate in a genome, the likelihood of two deleterious exonic alterations in 

the same gene, producing a knockout cell, increases exponentially. We modelled the rate 

of sSNV-caused knockout neurons (Fig. 2k), and found a substantial projected increase in 

AD over controls (P = 0.022, generalized estimating equation model). This model suggests 

that dysfunctional neurons would be markedly more abundant in AD, which may be 

compounded by the length of certain AD-relevant genes38; compromising neuronal function 

may therefore be one way in which sSNVs affect cellular physiology39. The pronounced 

effect of genomic damage, even in non-dividing cells, is underscored by the observation that 

multiple defects in DNA repair result in neuronal dysfunction and degeneration5,40.

Interrogation of AD neuron genomes by PTA

The experiments discussed thus far, which used MDA to amplify the genomes of single 

neurons, used LiRA variant calling to counteract allele dropout23 and signature-based 

filtering of amplification artefacts (Extended Data Fig. 1), which are features of MDA-based 

methods. To corroborate our findings from MDA-amplified single neuron genomes, we 

applied a second single-cell amplification method that removes most or all amplification 

artefacts41,42 as an orthogonal approach. Primary template-directed amplification (PTA)41 

achieves highly uniform genome amplification by using chain-terminating nucleotides 

to disfavour long amplification products that can be re-primed. PTA thus allows the 

identification of sSNVs in single human neurons while mitigating known single-cell 

artefacts that can be seen from MDA42, obviating the need for signature-based variant 

filtering. PTA-based scWGS of human neurons has confirmed that somatic mutations 

increase with age42. We performed PTA-based scWGS on a small sample of neurons from 

most brains profiled by MDA (29 neurons from 7 cases of AD and 40 neurons from 13 

neurotypical control individuals; Table 1) and confirmed that AD neurons contain increased 

somatic alterations compared to controls (P = 3.9 × 10−4, linear mixed model; Fig. 3a). 

This effect remained after controlling for technical metrics (Methods, Extended Data Fig. 

8c–f). The magnitude of the PTA-detected AD increase is somewhat lower than what was 

observed by MDA, which is likely to reflect in part residual amplification artefacts in MDA 

material. sSNVs detected by PTA show trinucleotide spectra (Extended Data Fig. 8a) and 

COSMIC signature contributions (Extended Data Fig. 8b) that are highly similar to those 

seen in multiplexed end-tagging amplification of complementary strands (META-CS), a 

recently reported duplex sequencing method that explicitly distinguishes double-stranded 

mutations and single-stranded DNA lesions25. PTA-identified mutational spectra closely 

cluster with META-CS-identified double-stranded mutations and are distinct from META-
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CS single-stranded lesions, which strongly suggests that PTA-detected sSNVs represent 

double-stranded somatic mutations.

We also examined PTA-detected mutations by signature decomposition, which again 

confirmed that signature A mutations increase with age in a clock-like manner (Fig. 3b), 

with a marginally significant increase in signature A in AD neurons (P = 0.04, linear mixed 

model). The AD-associated increase in mutations is most pronounced for signature C (P = 

5.3 × 10−3, linear mixed model; Fig. 3c). As with the increase in total mutations in AD 

neurons, the PTA mutational signature findings mirrored the trends seen in MDA-amplified 

neuron genomes. The residual PTA-detected mutations in AD neurons show a distinct 

trinucleotide spectrum (Extended Data Fig. 8a), with an excess of C>A and C>T mutations 

that is also seen in MDA-amplified neurons. When analysed for contributions of COSMIC 

cancer mutation signatures, the residual mutations in AD neurons show a distinct pattern 

from that of control neurons (Extended Data Fig. 8b), including many signatures seen with 

MDA-detected AD residual mutations. Among these are SBS8 as well as SBS30, which is 

associated with the DNA repair enzyme NTHL1 that is involved in oxidative lesion repair. 

The PTA-detected burden of sSNVs in transcribed regions correlated with levels of gene 

expression in the brain (P = 2.8 × 10−3, Pearson correlation; Fig. 3d), whereas signature A 

and C mutations showed similar patterns to those seen with MDA-detected sSNVs, pointing 

to specific effects of transcriptional activity on mutation occurrence. We also noted a C>A 

strand bias in PTA-amplified AD neurons (Fig. 3e), further implicating transcription-related 

events in the generation of sSNVs in AD neurons. Thus, both scWGS approaches identified 

similar patterns, and suggest that the pathogenic mutational mechanisms in AD include 

DNA oxidation, NER DNA repair and transcriptional activity.

Although several studies have confirmed that neurons accumulate sSNVs with age5,20,25, 

one recent study using a single-molecule technique called NanoSeq did not find greater 

genome-wide mutation rates in AD-affected brains compared to aged brains of neurotypical 

control individuals, and actually reported a small but significant decrease in somatic 

mutations in AD20. There are a few potential reasons for this discrepancy as compared to 

our findings in single AD neurons. One possibility is that single-stranded lesions or variants 

contribute to our signal, although we have taken lengths to exclude this, including custom 

computational removal of known MDA artefacts and application of the PTA scWGS method. 

The NanoSeq study may also reflect an analysis of different cell populations from the 

individual cells that we studied here. The NanoSeq analysis studied bulk DNA from 15,000 

pooled cells sorted using NeuN without size gating20, but we observed that sorting by NeuN 

alone includes excitatory and inhibitory neurons, as well as some glial cells (Fig. 1b, c). 

Therefore, the NanoSeq study does not enrich for the excitatory pyramidal neurons that 

are selectively vulnerable to AD21,22, which is likely to obscure the modest but consistent 

difference that we find when pyramidal neurons are enriched. The bulk NanoSeq method on 

all NeuN-expressing cells would also be susceptible to differences in cell-type abundance, 

which could account for the slightly decreased mutation count that was observed. Thus, 

increased somatic mutation burden in the AD brain may be limited to precisely the neuron 

subtypes that are most affected by the disease, potentially sparing some cell types.
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Discussion

Our analysis reveals that excitatory neurons in the brains of individuals with AD accumulate 

genomic damage—and likely permanent mutations—beyond the levels that occur as a result 

of ageing alone. The pattern of genomic SNV accumulation in AD neurons appears to 

be distinct from an accentuation of normal ageing, as suggested by (1) the abundance of 

signature C, which is present but limited in the brain of neurotypical control individuals; 

and (2) signature-specific transcriptional influences. These genomic changes may include 

a spectrum of manifestations, including single-stranded DNA lesions and double-stranded 

mutations. Notably, putative mutations identified by PTA-based scWGS were molecularly 

similar to bone fide double-stranded mutations identified by duplex sequencing, but 

dissimilar to single-stranded lesions. These correlations, combined with the evenness of 

PTA genome coverage, suggest that the AD-specific somatic alterations are predominantly 

double-stranded mutations. Future studies that are specifically designed to compare DNA 

lesions with permanent mutations may shed further light on the differential effects these 

related phenomena have in AD. Other types of somatic alterations—such as short insertions 

and deletions, structural variants and retrotransposition events—can also be explored in 

greater depth as technologies improve.

Beyond abundance, the specific patterns of somatic alterations in AD neurons provide clues 

as to their causes and potential effects in AD pathogenesis (Fig. 4), and identify potential 

therapeutic targets. Signature C is notable for the presence of C>A variants, associated with 

oxidative damage, which has been observed previously in AD4 and which we found to 

be increased in AD neurons. This suggests that sSNVs occur downstream of ROS during 

disease pathogenesis. Signature C has a notable similarity to COSMIC signature SBS8, 

which is associated with the transcription-coupled repair of damaged guanine10, strongly 

suggesting that it accumulates either through disease-related defects in NER, or, more 

likely, from an accelerated accumulation of oxidized nucleotides that overwhelms the repair 

pathway. Oxidized nucleotides reflect the presence of increased ROS, which have previously 

been reported in the brain of individuals with AD, and which can be generated by a variety 

of processes—including inflammation and mitochondrial dysfunction, which have also been 

reported in AD43. Our data show how these oxidative lesions may impair genomic function 

by interacting with mutations that occur as a part of ageing.

A major question that remains concerns how the buildup of AD-related genomic damage 

relates to the well-established accumulation of amyloid-β and tau proteins1,2. Indeed, both 

of these AD-associated misfolded proteins can induce ROS44,45, with the tau effect being 

mediated by mitochondrial dysfunction45. Furthermore, tau can trigger double-stranded 

DNA breaks46, thus further compounding the effects of sSNVs and potentially inducing 

more47. Many aspects of the oxidative stress induced by AD proteins are not clear, but 

this process may also include the amyloid-β-stimulated activation of microglia, which can 

produce ROS directly and can also indirectly initiate the generation of ROS through the 

release of pro-inflammatory cytokines48. Binding of amyloid-β to redox-active iron may 

also add oxidative stress49. It will be important to identify how protein misfolding and other 

known events in AD relate to the accumulation of somatic mutations in the pathogenesis of 

disease.
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Methods

Data reporting

No statistical methods were used to predetermine sample size. The experiments were not 

randomized, and the investigators were not blinded to allocation during experiments and 

outcome assessment.

Human tissue samples and selection of cases of AD

Post-mortem frozen human tissues were obtained from the Massachusetts Alzheimer’s 

Disease Research Center (MADRC) at Massachusetts General Hospital and the NIH 

Neurobiobank at the University of Maryland Brain and Tissue Bank (UMBTB). 

Tissue collection and distribution for research and publication was conducted according 

to protocols approved by the Partners Human Research Committee (for MADRC: 

1999P009556/MGH, expedited waiver category 5) and the University of Maryland 

Institutional Review Board (for UMBTB: 00042077), and after provision of written 

authorization and informed consent. Research on these de-identified specimens and data 

was performed at Boston Children’s Hospital with approval from the Committee on 

Clinical Investigation (S07-02-0087 with waiver of authorization, exempt category 4). 

Many neurotypical control tissues and datasets were obtained as part of a previous study5. 

Neurotypical control cases had no clinical history of dementia or other neurological disease. 

AD cases had a clinical history of dementia consistent with AD, pathologically confirmed 

AD pathological change (Braak stage V–VI) and no other notable neurodegenerative 

pathology. Age-matched cohorts included individuals who were over 50 years old (Table 

1).

Isolation of individual pyramidal neurons for single-cell studies

The isolation of single neuronal nuclei using fluorescence-activated nuclear sorting (FANS) 

for the neuronal nuclear transcription factor NeuN and whole-genome amplification (WGA) 

using MDA51 have been described previously5,52. In brief, nuclei were prepared from 

unfixed frozen human brain tissue, previously stored at −80 °C, in a dounce homogenizer 

using a chilled tissue lysis buffer (10 mM Tris-HCl, 0.32 M sucrose, 3 mM Mg(OAc)2, 

5 mM CaCl2, 0.1 mM EDTA, 1 mM DTT, 0.1% Triton X-100, pH 8) on ice. Tissue 

lysates were layered on top of a sucrose cushion buffer (1.8 M sucrose 3 mM Mg(OAc)2, 

10 mM Tris-HCl, 1 mM DTT, pH 8) and ultra-centrifuged for 1 h at 30,000g. Nuclear 

pellets were resuspended in ice-cold PBS supplemented with 3 mM MgCl2, filtered, then 

stained with anti-NeuN antibody directly conjugated to Alexa Fluor 488 (AF488) (Millipore 

MAB377X, clone A60, 1:1,250). NeuN staining produced a bimodal signal distribution (Fig. 

1b, bottom), distinguishing NeuN+ and NeuN− nuclei. Large neuronal nuclei, representing 

excitatory pyramidal neurons, were then identified by flow cytometry (using software BD 

FACSDiva v.8.0.2) by targeting the nuclei with highest NeuN signal among the NeuN+ 

neuronal fraction, while also gating for the population with the highest forward scatter 

area (FSC-A) signal, designated by the black box in Fig. 1b. This high-FSC-A, high-NeuN 

population is intended to represent large neurons, comprising 2–5% of the total population 

of nuclei in each sample.
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The composition of the targeted population of large neurons was assessed using single-

nucleus RNA transcriptomic sequencing (snRNA-seq), along with two control populations: 

all cells and all NeuN+ cells (each shown with respective gating boxes in Fig. 1b). snRNA-

seq of these three populations of cellular nuclei was performed on a representative tissue 

sample (control individual 1465, prefrontal cortex). Nuclei were isolated as described 

above, with the following modifications: 0.2 U μl−1 Protector RNAse inhibitor (Roche 

RNAINH-RO) and 0.2 U μl−1 SuPERase-IN RNAse inhibitor (Invitrogen) were both added 

to the tissue lysis buffer and to the immunostaining buffer, and MgCl2 was omitted from 

the immunostaining buffer. For each of the 3 populations, 16,000 nuclei were sorted 

into one well of a 96-well plate, then subjected to snRNA-seq using the 10X Genomics 

Next GEM Single Cell 3′ GEM Kit v3.1 and Chromium Controller. From these three 

populations, three libraries were prepared, each with dual indexes using the 10X Genomics 

Dual Index Plate. Each library was then sequenced on Illumina NovaSeq S4. The raw 

snRNA-seq data of three 10X libraries were analysed separately and then aggregated by Cell 

Ranger (v.6.0.0)53, followed by variance normalization, t-SNE clustering and visualization 

processed by Pagoda2 (v.0.1.0)54. Clusters with 50 or more cells were manually annotated 

as different neuronal and glial subtypes on the basis of the expression of marker genes using 

a similar protocol to that described in a previous study50 These snRNA-seq data (Fig. 1c) 

enabled the assessment of various sorting populations shown in Fig. 1b. The full population 

of cells (DAPI+) contained a mixture of excitatory neurons, inhibitory neurons and glia. The 

overall NeuN+ population was highly enriched for neurons, but contained many inhibitory 

neurons and some glia. The population of cells targeted in this study, large NeuN+ nuclei, 

was highly enriched in pyramidal neurons, consisting of 100% neurons, of which 99.3% 

were excitatory neurons (Fig. 1c), with minimal inhibitory neurons and glia.

scWGS of pyramidal neurons using MDA

Single nuclei, prepared as described above, were sorted one nucleus per well into 96-well 

plates, with each well containing 2.8 μl alkaline lysis buffer (200 mM KOH, 5 mM EDTA, 

40 mM DTT) pre-chilled on ice. Nuclei were lysed on ice for 15–30 min, then neutralized 

on ice in 1.4 μl neutralization buffer (400 mM HCl, 600 mM Tris-HCl, pH 7.5). These cold 

temperatures appear to be important to limit artefacts55. MDA was then performed in a 20 

μl total reaction volume by addition of an MDA master mix (12.18 μL QIAGEN REPLI-g 

reaction buffer, 2.675 μl H2O, 0.105 μl DTT, 0.84 μl REPLI-g Phi29 polymerase enzyme). 

MDA was performed at 30 °C for 2 h. This protocol was applied to all new MDA samples 

in this study, and was confirmed to yield equivalent results as a prior protocol using Phi29 

polymerase from a different distributor (repliPHI, Epicentre).

Samples were subjected to quality control by DNA quantification (PicoGreen, 3 μg yield 

required) and multiplex PCR for four random genomic loci. For an additional quality control 

step, we performed low coverage (0.5×) WGS, and cells with sufficiently even genome 

coverage (median absolute pairwise difference, MAPD; and coefficient of variation, CoV) 

were processed for deep sequencing. For germline reference, bulk DNA was purified using 

phenol:chloroform:isoamyl alcohol extraction and isopropanol precipitation, without RNAse 

A treatment. Amplified single-neuron genomes were prepared for sequencing by DNA 

shearing and libraries generated by Psomagen (Macrogen) and Novogene using Illumina 
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Tru-Seq kits and Illumina HiSeq X10 paired end sequencing (150 bp × 2) (Supplementary 

Table 1), as described previously5.

scWGS of pyramidal neurons using PTA

Single neurons, prepared as described above, were sorted one nucleus per well into 

96-well plates and their genomes were amplified by PTA41,42, a method that pairs an 

isothermal DNA polymerase with a termination base to induce quasi-linear amplification. 

PTA reactions were performed using the ResolveDNA Whole Genome Amplification Kit 

(previously known as SkrybAmp EA WGA Kit) (BioSkryb Genomics). Nuclei were sorted 

into 3 μl Cell Buffer pre-chilled on ice. Nuclei were then lysed by addition of 3 μl MS Mix, 

with mixing at 1,400 rpm performed after each step. Lysed nuclei were then neutralized with 

3 μl SN1 buffer. Three microlitres of SDX reagent was then added, followed by a 10-min 

incubation at room temperature. Eight microlitres of reaction mix (containing enzyme) was 

then added, for a total reaction volume of 20 μl. Amplification was carried out for 10 h 

at 30 °C, followed by enzyme inactivation at 65 °C for 3 min. Amplified DNA was then 

cleaned up using AMPure, and the yield was determined using PicoGreen binding (Quant-

iT dsDNA Assay Kit, Thermo Fisher Scientific). Samples were then subjected to quality 

control by multiplex PCR for four random genomic loci as previously described5, and also 

by Bioanalyzer for DNA fragment size distribution. Amplified genomes showing positive 

amplification for all four multiplex PCR loci were prepared for Illumina sequencing. In 

contrast to MDA, a low-coverage WGS screening step was performed.

Libraries were prepared following a modified KAPA HyperPlus Library Preparation 

protocol described in the ResolveDNA EA Whole Genome Amplification protocol. In 

brief, end repair and A-tailing were performed for 500 ng amplified DNA input. Adapter 

ligation was then performed using the SeqCap Adapter Kit (Roche, 07141548001). Ligated 

DNA was cleaned up using AMPure and amplified through an on-bead PCR amplification. 

Amplified libraries were selected for a size of 300–600 bp using AMPure. Libraries were 

subjected to quality control using PicoGreen and TapeStation HS DS100 Screen Tape 

(Agilent PN 5067-5584) before sequencing. Single-cell genome libraries were sequenced 

on the Illumina NovaSeq platform (150 bp × 2) at 30× coverage (Supplementary Table 

1). Data from PTA-amplified neuronal genomes in AD were analysed alongside data from 

control neurons that are reported elsewhere42.

Read-mapping and generation of BAM files

Reads generated from WGS were mapped onto the human reference genome (GRCh37 

with decoy) by BWA (v.0.7.15)56 with default parameters. Duplicate reads were marked 

by MarkDuplicates of Picard tools (v.2.8) and post-processed with local realignment 

around indels and base quality score recalibration using Genome Analysis Toolkit (GATK) 

(v.3.5)57.

Calling of sSNVs from scWGS data

We used phasing-based linked read analysis (LiRA, v.2018Feb)23 to identify sSNVs 

against individual-specific bulk germline reference genomes, as described previously5. 

The initial somatic and germline variants were called using GATK’s HaplotypeCaller and 
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germline variants were further phased by Shapeit 2 (v.904). sSNVs were called by LiRA 

and distinguished from technical artefacts when showing strong evidence for only two 

haplotypes with paired-end, read-backed linkage between the sSNV candidate and the 

adjacent germline heterozygous site. The autosomal genome-wide burden of sSNVs was 

then calculated by accounting for the proportion of phaseable sites and estimated false 

positive rate. We should emphasize that the raw LiRA calls are an intermediate step that 

requires scaling by a power ratio to calculate genome-wide somatic mutation rates that are 

comparable between cells (for example from MDA data, see Extended Data Fig. 1b). Of 

note, LiRA is only designed to call phased somatic variants in diploid genome regions, so 

we only considered sSNVs in autosomes for subsequent analyses to avoid potential detection 

bias in sex chromosomes between male and female individuals.

Because LiRA calling requires linked heterozygous germline sites for optimal specificity 

and false positive rate, it may limit its detection sensitivity in regions lacking phaseable 

germline variants. Therefore, to more comprehensively assess sSNVs in known AD risk 

genes (APP, PSEN1, PSEN2 or APOE) and the tau-encoding gene MAPT, we considered 

both the LiRA-called variants and the larger group of GATK calls that includes non-

phaseable parts of these genes. In both LiRA-called variants and GATK calls, we identified 

no known pathogenic sSNVs in any of these AD-related genes. The question of clonal 

somatic mutations in these and other AD risk genes also has been examined in other studies 

by bulk gene sequencing19,58,59.

Given the more even genome coverage and potentially fewer artefacts that are produced by 

PTA42, we used Single Cell ANalysis of SNVs (SCAN-SNV, v.2019Oct)60, which does not 

require phasing information from adjacent germline variants and thus has more detection 

power in non-phaseable regions, to identify specific genomic sites of sSNVs for mutational 

signature and other downstream analyses.

Determining the evenness of single-cell genome amplification

The evenness of single-cell genome amplification was quantified using two different 

methods (Supplementary Table 4). First, the MAPD metric was calculated as reported 

previously61, which is the median value across all absolute differences between log2-

transformed copy number ratio of neighbouring genome bins, and a higher MAPD score 

represents greater unevenness of amplification. Binning, GC normalization, segmentation 

and copy number estimation were performed to obtain copy number ratio per bin following 

a previous single-cell copy number analysis protocol62, and MAPD was then calculated 

by taking a median of absolute difference between neighbouring bins. Second, considering 

that MAPD cannot reflect the variance of the copy number ratio distribution within each 

neuron, the CoV was also calculated by normalizing the standard deviation of absolute 

difference between neighbouring bins by their mean. We also calculated a ‘power ratio’ 

metric, which is defined as the ratio between the LiRA-estimated genome-wide sSNV 

burden and the LiRA-called phaseable sSNV count, reflecting the proportion of the genome 

that has been adequately amplified for each single cell. Using mixed-effects modelling, 

we measured the effect of these three metrics of genome evenness on sSNV burden in 

well-characterized neurotypical PFC neurons. We then normalized the mutation burden in 
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each cell and estimated the age and disease effects on sSNV burden, as described in the 

section ‘Mixed-effects modelling of somatic SNV burden’.

Mutational signature analysis

To discover mutational signatures of sSNVs, we calculated the frequency of mutations 

in the 96-trinucleotide contexts for all control and AD neurons from the identified single-

neuron sSNVs (synthesized in Extended Data Fig. 5a for MDA, and in Extended Data 

Fig. 8a for PTA). Mutation signatures in MDA-amplified neurons were detected by fitting 

a non-negative matrix factorization (NMF)-based mutational signature framework63 using 

MutationalPatterns (v.1.8.0)64 (Extended Data Fig. 5b). As we increased the number of 

signatures, we estimated the signature stability and reconstruction error of each signature 

and identified four signatures (N1, N2, N3 and N4) (Extended Data Fig. 5c) that maximize 

the number of signatures while minimizing error (Extended Data Fig. 5b). We also used 

a second signature derivation method, SignatureAnalyzer (v.1.1)10,65, which can infer the 

optimal number of signatures from data by considering both model complexity and fitting 

accuracy. Under default parameters with half-normal distribution for priors and reducing 

effect of ultramutated samples, SignatureAnalyzer produced four signatures (W1–W4) with 

the greatest likelihood, which are nearly identical to signatures N1–N4 that were identified 

by MutationalPatterns (Extended Data Fig. 5c).

We observed a marked similarity between the de novo single-neuron signatures and 

previously published single-neuron signatures5 (Extended Data Fig. 5c), particularly when 

taking into account recently identified signatures of potential single-cell artefacts24. Each 

newly derived signature closely resembled a previously derived one: N4 with neuron 

signature A, N2 with neuron signature C, N1 with neuron signature B and potential artefact 

signature SBS scF, and N3 with SBS scE. To understand the underlying mechanisms for 

the identified mutational signatures, we further performed NMF analysis to decompose our 

signatures into the reported the COSMIC v3 signatures (https://cancer.sanger.ac.uk/cosmic/

signatures/; Extended Data Fig. 6a). We also performed NMF analysis to fit the COSMIC 

signatures to our composite disease and control single-neuron mutational profiles, which is 

shown in Extended Data Fig. 6b.

Given the near identity between the de novo and prior neuron signatures, we used the 

prior signatures for our subsequent analyses. On the basis of the evidence that SBS scF 

(highly similar to signature B) represents potential single-cell artefacts24, we excluded the 

contributions from these signatures in our assessment of genome-wide sSNV burden for 

each single neuron.

Similarly, we used MutationalPatterns to determine mutational signature contributions in 

PTA-amplified neurons using the signatures we identified in MDA-amplified neurons. For 

PTA-amplified single-neuron genomes, we did not identify significant contributions from 

potential artefact signatures SBS scE and SBS scF, which prompted the filtering steps 

for data from MDA-amplified genomes. Therefore, for PTA-amplified genomes, we report 

unfiltered variant calling data.

Miller et al. Page 15

Nature. Author manuscript; available in PMC 2022 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://cancer.sanger.ac.uk/cosmic/signatures/
https://cancer.sanger.ac.uk/cosmic/signatures/


Filtering of LiRA-called somatic SNVs from MDA-amplified genomes of single neurons

Previous studies and our observations have suggested additional measures beyond LiRA 

to further minimize experimental artefacts that may occur during MDA amplification of 

single-cell genomes24. Beginning with total LiRA-called sSNVs (Extended Data Fig. 1a), 

we undertook a series of analyses on our human neuron MDA scWGS data, examining 

the influence of uneven genome amplification and the value of identification of specific 

mutational signatures proposed as potential artefacts of single-cell genome amplification24. 

We found that cells with highly uneven genome amplification (MAPD > 2.0) show increased 

LiRA-called sSNV counts (Extended Data Fig. 1c), including sSNVs attributable to the 

potential artefact signature SBS scE, largely comprising GC>GT changes (Extended Data 

Fig. 1d). We also observed that a small subset of neurons, only seen in AD, show an 

‘ultramutated’ profile (more than 20,000 LiRA-called sSNVs; Extended Data Fig. 1a), 

which is dominated by SBS scE (Extended Data Fig. 1d), suggesting that these amplified 

genomes may show LiRA sSNV calls that do not represent biological double-stranded fixed 

somatic mutations. The observed variants in these outlier cells may represent experimental 

artefacts, including false calls due to errors occurring early in genome amplification. 

Alternatively, the observed scE variants may also represent non-mutation biological events, 

such as unrepaired single-strand damaged nucleotides, which could be misread as sSNVs 

owing to strand dropout during genome amplification (Extended Data Fig. 1f). Although 

examination of the potential biological component of this phenomenon may provide 

important insights, we developed a computational filtering pipeline to generate a set of 

filtered sSNV calls, focusing our analysis on bona fide somatic mutations (Extended Data 

Fig. 1g).

Mixed-effects modelling of somatic SNV burden

To evaluate the relationships between somatic mutation and factors including age and 

disease status, we performed linear mixed-effects regression modelling using the lme4 

(v.1.1-23) R package66, in a similar manner to our previous study5. Both genome-wide 

sSNV burden and signature-specific sSNV burden were considered as continuous outcomes 

in modelling. Disease status and other covariates of interest (for example, age and 

measurement of amplification evenness) were modelled as fixed effects, and donor–tissue 

groups were modelled as random effects, because neurons from a donor and each tissue type 

may be correlated owing to shared biological environment. Linear mixed-effects models 

were fitted using the maximum likelihood method, and P values from a t-test with the 

Satterthwaite approximation were calculated for each fixed effect as implemented in the 

lmerTest (v.3.1-2) R package67. Of note, we also used the marginal generalized least-squared 

method to fit the mixed-effects model, using the nlme (v.3.1-137) R package, which 

produced substantially similar results.

To test the age effect of sSNV burden in PFC and hippocampus from neurotypical 

individuals, we fitted the model yijk = (β + γj)× ρi + μ + θij + εijk, where yijk is the 

sSNV burden in neuron k from brain region j of donor i, β is the fixed-effect of age, γj 

is the fixed-effect of brain region j on age indicating interaction terms of age and brain 

region, ρi is the age of donor i, μ is the number of sSNVs at birth, θij is the random effect 

of the donor–tissue pair following a normal distribution with mean 0 and variance τ, and 
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εijk is the measurement error of each neuron also following a normal distribution with mean 

0 and variance σikj (Fig. 1d–f). To control for the potential confounding factor of genome 

amplification evenness, we further introduced another covariate, δijk, which represents the 

neuron-specific measurement of amplification evenness (for example, MAPD, CoV and 

power ratio) into the previous model, and re-estimated the age effect by subtracting the 

neuron-specific contribution of the amplification unevenness coefficient from yijk (Extended 

Data Fig. 3a–d). We found that PFC and hippocampus show no significant difference on the 

age effect before and after controlling for amplification evenness (all P > 0.25), therefore 

we did not consider the brain region covariate in downstream modelling. In addition to the 

genome-wide sSNV burden, we also analysed signature-specific sSNVs with similar models 

(Fig. 1g).

To test the difference of sSNV burden between AD and control neurons in an age-controlled 

manner, we fitted the model yijk = β × ρi + αi + μ + θij + εijk, where αi is the fixed-effect 

of disease status (AD versus control), whereas yijk, β, ρi, μ, θij and εijk are defined as 

previously (Fig. 1h). We further adjusted the sSNV burden by considering the contribution 

of amplification evenness δijk as we estimated above, and the difference of sSNV burden 

between AD and control neurons remained significant in both MDA- and PTA-amplified 

neurons (Extended Data Figs. 3e–h, 8c–f).

To exclude the possibility that the observed sSNV burden increase in AD can be driven by 

systemic differences in sample or sequencing quality metrics, we further introduced ωijk into 

the linear mixed-effects model: yijk = β × ρi + αi + μ + θij + εijk + ωijk, where ωijk denotes 

one of the potential confounding factors including sex, post-mortem interval, DNA quality 

(DIN), sample storage time, sequencing depth, library insert size, proportion of read bases 

with base quality at least 20, and number of heterozygous germline SNVs (an indicator of 

genomic size of phaseable region). We confirmed that, in both MDA- and PTA-amplified 

neurons, the increased sSNV burden in AD remained significant after controlling for each 

(all P < 0.01). For Fig. 1j, k, we also calculated AD-attributable excess somatic mutations 

as the residual value for each single neuron after subtracting the age effect (β × ρi + μ) 

estimated from neurotypical control neurons in prefrontal cortex.

To test whether sSNV burden is associated with ApoE genotype in patients with AD, we fit 

the model y′ijk = ωi + θij + εijk, where y′ijk is the age-corrected sSNV burden (yijk − β × ρi) 

for each neuron, and ωi is the ApoE genotype of risk allele ε4 under dominant, recessive and 

additive genetic models. No significant association was observed in any of the three genetic 

models in MDA- or PTA-amplified neurons (all P > 0.21).

Gene expression analysis

To test whether somatic mutation is associated with gene expression level, we extracted the 

brain PFC expression data from GTEx68. The per-gene expression value was normalized for 

each individual after controlling for age and gender using DESeq2 (v.1.24.0)69 and averaged 

across all the individuals. Genes were then assigned to 10 deciles on the basis of their 

PFC expression levels, and all sSNV density was calculated for each decile of genes after 

normalizing by per-neuron sSNV detection power ratio and total gene length. To control 

for potential bias due to trinucleotide context and the distribution of phaseable regions 
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(areas with sufficient sequencing coverage and an adjacent heterozygous germline SNP), 

we permuted the per-neuron sSNV list for 1,000 rounds by randomly shuffling the sSNVs 

within the phaseable regions while keeping the trinucleotide context distribution the same. 

We calculated the mean and standard deviation of the per-decile density in the permuted 

dataset, and then measured the difference between observed and expected sSNV density for 

each decile of AD or age-matched control group. This analysis included all brain regions 

in each experiment (PFC and hippocampus for MDA-based scWGS; PFC for PTA-based 

scWGS).

We further performed an NMF-based mutational signature analysis for sSNVs located in 

each decile of genes, to estimate the relative contributions of signature A, signature C, SBS 

scE and SBS scF for each decile. The sSNV density for each signature was calculated by 

multiplexing the overall sSNV density by each signature contribution.

Functional enrichment analysis

Analysis for functional enrichment of GO terms was performed using GOseq (v.1.34.1)70. 

For each RefSeq gene, we assigned a binary value ‘0’ or ‘1’ according to whether any 

sSNVs are located in the corresponding gene. Of note, this analysis is based on the LiRA 

output of sSNVs (signature-based filtering cannot be applied to individual genes or variants), 

and therefore this list may contain a small proportion of artefactual sSNVs. A probability 

weighting function in GOseq was applied to control for potential gene length bias. The 

Wallenius approximation method was used to test the enrichment of sSNVs, and the false 

discovery rate (FDR) method was further applied for the correction of multiple hypothesis 

testing. Genes without any GO annotation were ignored when calculating the total gene 

count. GO terms with fewer than 10 hits were excluded to avoid ascertainment bias. Very 

large GO terms with more than 1,000 genes were also ignored. All the GO terms with P < 

0.01 in either AD or control neurons are listed in Supplementary Table 6.

Strand bias analysis

Mutations in transcribed regions of the genome may show a different density between 

transcribed and untranscribed strands (so-called strand bias)71,72, resulting from asymmetric 

mutagenesis and/or repair activity between strands. The transcriptional strands of genic 

sSNVs were assigned on the basis of the UCSC TxDb annotations by MutationalPatterns64. 

Mutated bases (‘C’ or ‘T’) on the same strand as the gene direction were categorized 

as ‘untranscribed’ and on the opposite strand as ‘transcribed’. Strand bias analysis was 

performed on the set of mutations identified in PFC and hippocampal neurons together, 

on the net increase (residual) of mutations in AD neurons over control neurons. Statistical 

significance was determined by the Poisson test.

Location of sSNVs relative to genomic features

Annotations from ANNOVAR73 were used to identify sSNVs falling in the following 

positions: intergenic, upstream (within 1 kb region upstream of transcription start site), 5′ 
UTR, exonic (coding sequence, not including untranslated regions), 3′ UTR, downstream 

(within 1 kb region downstream of transcription start site), splicing (within intronic 2 bp 

of a splicing junction), intronic. The functional interpretation was classified using four 
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categories of SNV annotation: synonymous (SNV that does not cause an amino acid 

change), nonsynonymous (SNV that causes an amino acid change, excluding stop-gain 

and stoploss SNVs), stop-loss (nonsynonymous SNV that eliminates a stop codon), and 

stop-gain (nonsynonymous SNV that creates a stop codon). For exonic and UTR sSNVs, 

we further grouped them into 10 deciles according to their position relative to the transcript 

length. Similar to gene expression analysis, we used the 1,000 rounds of permutation within 

phaseable regions by controlling for trinucleotide context distribution, and then calculated 

the normalized difference (D) between observed (Nobs) and expected (Nexp) sSNV counts as 

below:

D =
Nobs − Nexp

Nexp

Modelling the accumulation of gene knockouts in neurons

Many specific heterozygous mutations could damage neuronal function39. Biallelic, exonic, 

deleterious ‘gene knockout’ (KO) mutations in essential genes would be especially 

damaging, such that there may be a threshold for the accumulation of such KO mutations 

above which neuronal function would deteriorate. On the basis of the number of sSNVs we 

identified in this report, we estimated the accumulation of gene KOs in cortical neurons, 

using a method described previously5. In brief, we estimated the probability of a mutation 

causing a gene knockout in a cell. In a diploid genome this corresponds to calculating the 

probability that two or more damaging mutations fall on the same gene, given the number of 

damaging mutations observed in a sample. This probabilistic problem can be modelled by an 

approximation of the birthday problem:

Pr KO n = 1 − e
−n2

no.of genes , where

n = no . of sSNVs × total deleterious variants
total variants × 0.5,

where n is the expected number of deleterious mutations for a given neuron. The 

approximation used here is different from the one published previously5 to allow for 

more robust approximation when 0 < n < 1. This model was further expanded to 

include information about genes that are intolerant to heterozygous mutations, resulting 

in haploinsufficiency and functional knockout. This is captured by the probability of loss-of-

function intolerance (pLI) metric, with genes with a high pLI score (pLI ≥ 0.90) being less 

tolerant74. ExAC reported that 17% of all genes have such high pLI scores. We then used 

this information for the final model, written a follows:

n = number of deleterious mutations

di = event that gene i has at least one mutation
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πi = event that gene i has a high pLI score

D = probability of a gene having a deleterious mutation

Pr KO π, D, n = π × 1 − 1 − D n + 1 − π 1 − e−nD

The average was taken across all cells per individual (n > 3 cells each, with specific 

n shown in the Source Data for Fig. 2k) and 95% CI on those point estimates were 

calculated for illustration purposes. A scale factor of 100 was used to convert probabilities 

into percentages. To test whether there was a higher probability of obtaining a KO in AD 

versus controls, we used generalized estimating equations with an exchangeable working 

correlation structure to model the probabilities using a probit link function using the geepack 

(v.1.3-1) R package. Namely, we fitted the model for each donor–tissue pairing k and neuron 

i as follows:

g κk, i = βage, kXage, ki + βdiagnosisXdiagnosis
+ βdiagnosis:age, kiXage, kiXdiagnosis, ki

with the correlation between two neurons in a donor-tissue pair defined as Corr(κk,i, κk,i′) = 

ρ, where κijk is the probability of a neuron having a KO mutation with the function g() being 

the probit link function.

Immunofluorescence microscopy for 8-oxoG as a biomarker for neuron oxidative damage

To examine whole-cell oxidation status in individual neurons in post-mortem human brain, 

we performed immunofluorescence staining and quantification for cellular 8-oxoG, the most 

frequent oxidative nucleotide product caused by ROS, under conditions known as oxidative 

stress. Formation of 8-oxoG is an important biomarker for oxidative status and oxidative 

DNA damage lesions in the cell75.

Fresh-frozen human brain PFC tissue was embedded in OCT medium and then cryo-

sectioned (20 μm), with sections applied to uncharged glass slides and fixed for 10 min 

using 4 °C Carnoy’s fixative (60% ethanol, 30% chloroform and 10% acetic acid). Slides 

were washed in cold 1× PBS 3 times for 10 min each. A circle was drawn around 

the tissue section using a grease pen and slides were placed into a humifying chamber. 

Primary antibody solution consisted of: 0.2% Tween-20, rabbit anti-NeuN (1:1,000, Abcam 

ab177487) and mouse anti-8-oxoG (1:500, Abcam ab206461, clone 2Q2311) in blocking 

solution (10 mg ml−1 bovine serum albumin, 0.02 % sterile normal donkey serum, 2 mg 

ml−1 glycine, 2 mg ml−1 lysine in 1× PBS). Primary antibody solution was applied, and 

slides were sealed in a humidifying chamber and incubated at 4 °C overnight. Slides were 

then washed with cold 1× PBS and secondary antibody solution was applied to each slide. 

Secondary antibody solution: 0.2 % Tween-20, donkey anti-rabbit Alexa Fluor 488 (1:250, 

Thermo Fisher Scientific A32790) and donkey anti-mouse Alexa Fluor 555 (1:250, Thermo 
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Fisher Scientific A32773) in 1× PBS. Slides were sealed in a humidifying chamber and 

incubated at 4 °C overnight. Slides were washed in 1× PBS then put in a dehydration series 

consisting of 50% ethanol (5 min), 70% ethanol (3 min × 2), 95% ethanol (3 min × 2), 100% 

ethanol (3 min × 2), and xylenes (5 min × 2). After the xylene step, tissue was permanently 

mounted using DPX and a glass coverslip. Slides were allowed to dry overnight before 

microscopy.

Two staining batches were performed for all cases, using an antibody master mix to reduce 

staining differences between slides. A middle-aged individual (46-year-old woman; case 

5773) was used to establish the fluorescence exposure setting for 8-oxoG and NeuN and 

used for the imaging of all cases. Tissue was visualized by using a Zeiss Axio Observer 7 

fluorescent microscope equipped with an X-cite Exacte 120 LEDboost lamp, Zeiss Axiocam 

506 mono camera, Zen Blue 2.5 pro software and a 20× objective lens. AF488 (499ex/520 

em) was paired with a 530/30 nm bandpass filter and AF555 (553ex/568em) was paired 

with a 582/15 nm bandpass filter channel. The top and bottom of intracellular NeuN 

immunoreactivity were used to establish z-stack bounds using 0.24-μm steps at 2,752 × 

2,208 resolution, pixel size 4.54 μm × 4.54 μm and 1 × 1 binning. Neuron cell body 

8-oxoG immunofluorescence was quantified using Fiji (ImageJ) software. For each case, 

n = 100 total neurons were examined and quantified for 8-oxoG (50 neurons each from 

two independent staining experiment batches per case). For each cell, a single z-section 

was chosen representing the centre of the neuron in the Z-plane. A line was drawn around 

the perimeter of the neuron cell body, as visualized by NeuN 488 channel. The mean grey 

value (absorbance units, AU) was measured within the perimeter area in the 8-oxoG 555 

channel and considered the ‘intracellular signal’. The neuron perimeter object was moved to 

an area adjacent to the neuron with no intracellular NeuN or 8-oxoG immunoreactivity and 

the mean grey value was measured. This value was considered ‘background signal’ and was 

subtracted from the intracellular signal value. The final value was used to represent mean 

8-oxoG immunofluorescence signal for the cell.

Reporting summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this paper.
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Extended Data

Extended Data Fig. 1 |. Filtering of LiRA-called sSNVs to minimize single-cell artefacts from 
MDA amplification.
a, Total pre-filtering LiRA-called sSNV per genome for control and AD single neurons. 

Single neuronal nuclei from prefrontal cortex (PFC) and hippocampal CA1 (HC) underwent 

scWGS (45X targeted average coverage). Genome-wide counts of sSNV were determined 

using linked-read analysis (LiRA). Per genome sSNV counts for all control and AD neurons 

are shown here, prior to signature-based filtering. b, Total pre-filtering LiRA-called sSNV 

per genome plotted against raw LiRA-called sSNVs, an intermediate metric in the LiRA 

calling pipeline prior to power ratio adjustment for genome coverage and false positive rate. 

c, Single neuron sSNV counts in relation to coverage evenness of genome sequencing. Total 

pre-filtering LiRA-called sSNV counts from single neuronal nuclei are shown in relation to 

median absolute pairwise difference (MAPD) scores for the coverage evenness of each cell. 
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At very high MAPD scores (>2.0), sSNV counts increase with MAPD, raising concern for 

artefactual sSNV calls in these cells owing to uneven genome coverage. d, e, Using NMF 

mutational signature analysis, the sSNV contribution was determined for two signatures 

potentially representing single-cell amplification artefacts: SBS scE and SBS scF24. For 

signature, the mutation type frequency for each trinucleotide context is shown above the 

sSNV plot. SBS scF is composed of C>T changes, while SBS scE is characterized by 

a particular subset of C>T, GC>GT. Signature SBS scE showed elevation in cells with 

MAPD >2.0. Signature SBS scF shows a relationship between uneven amplification (high 

MAPD) and SBS scF, perhaps owing to allele dropout causing single strand lesions to 

be read as somatic mutations. A subset of AD neurons showed LiRA-called pre-filtering 

sSNV counts >20,000/neuron and substantial component of potential artefact signature SBS 

scE. These neurons may represent an agonal ‘ultramutated’ state, but were not included in 

subsequent analyses owing to the abundance of potential artefact signature SBS scE (see 

g). f, Schematic for potential generation of artefactual sSNV in scWGS owing to uneven 

coverage. The scWGS LiRA platform calls sSNVs that are linked by sequencing reads to 

heterozygous germline single nucleotide polymorphisms (SNPs) (left). A single-stranded 

lesion of DNA damage, such as oxidation or alkylation, is paired with an unmodified base 

on the opposite genomic strand, such that LiRA would not call a sSNV under conditions 

of sufficiently even sequencing coverage (middle). However, if severe non-uniformity in 

strand-specific amplification (strand dropout) occurred, the single-stranded DNA lesion (or 

a polymerase error on one strand) could be erroneously called as an sSNV (right). For 

this reason, severely uneven single-cell genome amplification could produce artefactual 

LiRA sSNV calls. g, Analysis pipeline for minimization of potential artefacts of single-cell 

genome amplification and sequencing. Using our observations and advances reported in 

Petljak et al.24, we developed a computational pipeline to generate a set of higher-confidence 

filtered sSNV calls. This pipeline uses SNP-phased SNVs called by linked-read analysis 

(LiRA), and applies 3 additional specific steps to the initial variant call set: 1) Removal 

of single neurons which display widely uneven genome amplification, as indicated by 

MAPD score >2.0, above which the number of sSNVs increases (see c), raising concern 

for false positive variant calls due to uneven genome coverage; 2) Removal of single 

neurons whose mutational profile is dominated by the potential artefact mutational signature 

SBS scE (see d); and 3) Removal from each neuron the contribution of variants from 

the potentially artefactual signatures SBS scE and SBS scF. These steps produce counts 

of higher-confidence filtered sSNVs from single neurons. Although mutational signatures 

SBS scE and SBS scF have been previously reported as a potential artefact of single-cell 

genome amplification, the signal does potentially carry biological information. However, in 

this study we exclude these variants so as to minimize the influence of potential artefactual 

sSNV calls, to focus our analysis on the higher-confidence filtered sSNVs.

Miller et al. Page 23

Nature. Author manuscript; available in PMC 2022 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 2 |. Single-cell variant calling identifies high-confidence sSNVs.
To assess the quality of the sSNVs identified from single-cell MDA-amplified WGS data, 

we compared their variant allele fractions in control and AD neurons to those of phaseable 

high-confidence heterozygous germline SNVs from the same neurons, shown for each 

base change type. The distributions between somatic and germline SNVs are comparable, 

indicating the validity of the somatic mutation calling method, as has been previously 

reported for the LiRA calling method5,23.
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Extended Data Fig. 3 |. sSNVs in neurotypical control and AD neurons, normalized by evenness 
of genome amplification or LiRA caller power ratio.
To assess the sSNV, as determined by the variant calling approach used in this study, we 

plotted sSNV counts from MDA-amplified single neurons against age, including using 

sSNV counts that were normalized for two distinct measures of evenness of genome 

coverage, median absolute pairwise difference (MAPD) and coefficient of variation (CoV). 

We also normalized by the power ratio used in LiRA phasing-based sSNV detection (see 

Methods). a–d, sSNVs per genome for neurotypical control neurons, with mixed-effects 

modelling trend lines for ageing. We observed a significant age-dependent increase of sSNV 

burden in each analysis, with the slope for human pyramidal neurons ranging from 16.4 

sSNV/yr to 21.1 sSNV/yr, depending on the method of adjustment for genome coverage 

evenness. For analysis of PFC region cells alone, we observed a similar range of slopes by 

this analysis: 16.8 sSNV/yr to 21.3 sSNV/yr. e–h, sSNVs in AD compared to neurotypical 

control neurons. Unadjusted for evenness (e, reproduced from Fig. 1h, AD neurons show 
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a mean of 2672 (range 783-8990) sSNVs, an excess of 971 over controls (P = 6.5 × 

10−5, linear mixed model). f, Normalized for MAPD, AD neurons show a mean of 1582 

(range 33-8366) sSNVs, an excess of 480 over controls (P = 0.01, linear mixed model). g, 

Normalized for CoV, AD neurons show a mean of 2264 (range 68-8861) sSNVs, an excess 

of 831 over controls (P = 6.7 × 10−5, linear mixed model). h, Normalized for power ratio, 

AD neurons show a mean of 2015 (range 162-7892) sSNVs, an excess of 511 over controls 

(P = 7.2 × 10−3, linear mixed model). In each analysis, AD neurons showed a significantly 

greater number of sSNV compared to control neurons. Although some normalizations 

may result in reduced detection of biological differences in AD specimens, we observed 

that sSNV differences are retained even after normalization, supporting a sSNV difference 

between AD and control neurons.

Extended Data Fig. 4 |. Distribution of sSNVs in relation to gene position comparing AD and 
age-matched control neurons.
a, sSNVs per neuron across different categories of genomic regions, based on position 

relative to gene structure. b, Proportional distribution of sSNVs in AD and control cases 

across different categories of genomic regions. Upstream and downstream were defined 

as <1 kb genomic regions from the transcription start and end sites, respectively. Each 
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proportion is normalized by the expected proportion after controlling for trinucleotide 

context of phaseable regions. c, Proportional distribution of sSNVs relative to gene transcript 

length. The proportions for control or AD sSNVs were normalized by the expected 

proportion after controlling for trinucleotide context of phaseable regions. For each set, 

mean ± SEM is shown. For b, c, P value is shown for the observation showing statistically 

significant difference between AD and control (two-tailed t-test). AD neurons show a 

trend of excess over controls in sSNVs in upstream positions (not surviving Bonferroni 

correction). Data in this figure were obtained by MDA amplification of single genomes of 

neurons.

Extended Data Fig. 5 |. Somatic mutation trinucleotide context profiles and signature derivation 
in MDA-amplified single-neuron genomes.
a, Trinucleotide context somatic mutation profiles in AD and control neurons. Mutations 

called by LiRA are shown by base substitution change (bar colour), separated for each of 

Miller et al. Page 27

Nature. Author manuscript; available in PMC 2022 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the 16 possible trinucleotide contexts for each substitution (96 total trinucleotide contexts). 

For each brain region profiled, the aggregate is shown for AD cases, neurotypical controls, 

and the difference (residual of cases mutations minus control mutations). b, Signature 

metrics for de novo mutational signature derivation from neurons in this study. Using the 

frequency of sSNV mutations in their trinucleotide context for all control and AD neurons, 

we fitted mutational signatures with a NMF-based framework. We identified four signatures, 

N1-N4, that maximize the cophenetic of the decomposition81. c, sSNV mutational signatures 

evaluated in this study. We performed de novo mutational signature generation using NMF 

(MutationalPatterns and SignatureAnalyzer) on the set of scWGS data from single neurons 

from AD and neurotypical controls, which each produced 4 highly similar signatures by 

best fit. Previously published analysis of single neurons (Lodato et al.)5 during ageing 

produced 3 signatures: A, B, and C. A recently published study of cultured cells (Petljak et 

al.)24 identified signatures thought to represent artefacts of scWGS, including SBS scE and 

SBS scF. d, Variation between neurons of mutational signature contributions. We performed 

linear regression for signature contribution with respect to age and disease status. The 

residual signature contribution of each neuron for signature A and signature C is shown here, 

for each disease group. Also shown are the mean (bar) ± standard deviation (boxes), with 

the range (whisker lines). In addition to the neurotypical control and AD neurons reported 

in this manuscript, we also performed this analysis on previously reported single human 

neuron data for two NER-deficiency diseases: Cockayne syndrome (CS) and xeroderma 

pigmentosum (XP)5. Because only PFC was studied for CS and XP, only the control and 

AD neurons from PFC were used for this analysis. For each disease group, signature C 

showed a greater standard deviation than signature A; standard deviation ratios between 

signatures C and A are as follows: 1.2 (control), 1.2 (AD), 3.2 (CS), and 1.1 (XP). Data were 

obtained from MDA amplification of single neuron genomes. Boxplots show mean ± SD, 

with whiskers denoting minima and maxima.

Extended Data Fig. 6 |. COSMIC mutational signature contributions to single-neuron signatures 
and disease-related mutational patterns.
a, The set of trinucleotide contexts in single neuron signatures derived in the prior study 

(signatures A and C)5, along with single neuron signatures derived de novo from single 
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AD and control neurons (signatures N4 and N2 derived using MutationalPatterns, and 

signatures W3 and W2 derived using SignatureAnalyzer) were analysed for contributions 

by COSMIC v3 single base substitution mutational signatures by NMF. The matching prior 

and de novo signatures show highly similar COSMIC signature contributions. b, The set 

of mutation trinucleotide contexts present in AD and control neuron genomes amplified 

by MDA, as well as the matrix of mutations obtained by subtracting control from AD 

(AD residual), were analysed for contributions by COSMIC signatures. Multiple COSMIC 

signatures identified here, many of which also contribute to signature C5, are associated 

with transcription-coupled nucleotide excision repair at particular damaged nucleotides 

with specific resultant base changes, including: SBS8 (guanine damage, C>A mutations), 

SBS22 (adenine damage, T>A mutations), SBS12 (adenine damage, T>C mutations), and 

SBS19 (guanine damage, C>T mutations). Other signatures have been associated with 

deficiencies of separate DNA repair processes: SBS6 (mismatch repair) and SBS30 (base 

excision repair). SBS5, associated with ageing, contributes significantly to the control and 

AD samples, but not to the AD residual mutations.

Extended Data Fig. 7 |. Immunofluorescent detection of nucleotide oxidation in neurons.
Immunofluorescence was performed on post-mortem human brain prefrontal cortex. NeuN 

(AF488) was used to label neurons and 8-oxoG (AF555) used to label oxidized guanine 

nucleotides. a, For each case sample, in a full microscopic field of up to 100 NeuN+ 

neurons, 8-oxoG signal was quantified per neuron. Here, each data point represents the 

8-oxoG signal from one neuron, with mean and SEM shown in black for each case. 

Figure 2f shows mean 8-oxoG values of each case in relation to age and disease status. 

b, Representative microscopy images (turquoise or purple boxes) are shown for neurotypical 

control and AD samples from a. n = 100 total neurons examined (50 neurons each from two 
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independent staining experiment batches per case). NeuN+ neurons are shown in green and 

8-oxoG in greyscale or magenta. Scale bars represent 60 μm.

Extended Data Fig. 8 |. Features of somatic mutations in single neurons assessed by PTA.
a, Trinucleotide somatic mutation spectra of cells or bulk samples studied by various 

methods were compared. For PTA-amplified single neurons, the aggregate of mutations 

is shown for AD cases, age-matched neurotypical controls, and the residual (net increase 

of case mutations over control mutations). Mutational spectra from other methods include 

NanoSeq-studied bulk samples from AD or controls and META-CS single neuron data for 

double-stranded mutations or single-stranded DNA lesions. Mutations are shown by base 

substitution change (bar colour). Of note, single-stranded DNA lesions show a distinct 

profile from mutations detected by PTA, NanoSeq, and META-CS. b, The spectra of 

mutations detected in PTA-amplified neurons (AD, control, and AD residual) and from 

other published methods were analysed for contributions by COSMIC cancer signatures. 
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Elements of COSMIC signatures identified in the AD residual mutation set, including SBS8, 

also contribute to signature C5. Of note, single-stranded DNA lesions show a distinct profile 

from mutations detected by PTA, NanoSeq, and META-CS. c–f, sSNV detected using PTA 

in AD and neurotypical control neurons, normalized by evenness of genome amplification 

or LiRA caller power ratio. c, Total sSNVs per genome plotted against age (uncorrected, 

reproduced here from Fig. 3a for comparison). AD neurons show a mean of 1419 (range 

514–2157) sSNVs, an excess of 196 over controls (P = 3.9 × 10−4, linear mixed model). 

d, MAPD-normalized sSNVs per genome, from which AD neurons show a mean of 1703 

(range 814-2748) sSNVs, an excess of 453 over controls (P = 2.7 × 10−6, linear mixed 

model). e, CoV-normalized sSNVs per genome, from which AD neurons show a mean of 

1440 (range 527-2255) sSNVs, an excess of 189 over controls (P = 5.3 × 10−4, linear mixed 

model). f, Power-normalized sSNVs per genome, from which AD neurons show a mean 

of 1423 (range 517–2166) sSNVs, an excess of 198 over controls (P = 3.8 × 10−3, linear 

mixed model). In each analysis, AD neurons showed a significantly greater number of sSNV 

compared to control neurons.

Extended Data Table 1 |

Studies of sSNV rates and signatures during ageing in various human cell types5–7,76–80

Study Tissue/cell Method sSNV increase 
per year per 

cell

Mutational 
signatures of 

aging cells

Blokzijl et al. 
20166

adult stem cells of small 
intestine, colon, liver

WGS of clonal organoid 
cultures derived from 
primary multipotent cells

35–40 COSMIC 
Signature 5

Hoang et al. 
201676

bulk brain (frontal 
cortex), colon, kidney

dilution followed by 
WGS (BotSeqS)

~33 (in bulk 
brain)

Lodato et al. 20185 neurons (prefrontal 
cortex)

single-cell WGS ~23 COSMIC 
Signature 5

Osorio et al. 20187 hematopoietic stem cells WGS on clonal cultures 14 COSMIC 
Signature 5

Franco et al. 
201877

skeletal muscle resident 
progenitor/stem (satellite) 
cells

WGS on in vitro clonally 
expanded single cells

13 COSMIC 
Signatures 1,5,8

Zhang et al. 201978 B lymphocytes single cell WGS ~26 COSMIC 
Signatures 1,5

Lee-Six et al. 
201979

colon (crypts) WGS of colorectal crypts, 
to represent clones from 
colorectal stem cells

>40 COSMIC SBS5, 
SBS1

Franco et al. 
201980

kidney tubules, 
epidermis, subcutaneous 
adipose, visceral adipose

WGS on in vitro clonally 
expanded single cells

~55 (KT2)
~12 (KT1)

~20 (adipose)

COSMIC SBS1, 
SBS3/8, SBS5, 

SBS40

This study neurons (prefrontal 
cortex and CA1 
hippocampus)

single-cell WGS 16–21 COSMIC SBS5

Of note, COSMIC v3 single base substitution signatures SBS1 and SBS5 are similar and analogous to v2 signatures 1 and 
5, respectively (https://cancer.sanger.ac.uk/cosmic/signatures). The table refers to several previous studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Methods), and can be obtained by qualified investigators at https://www.niagads.org/. Gene 

transcripts per million (TPM) data (V8) of GTEx samples were downloaded from https://

www.gtexportal.org/home/datasets. Source data are provided with this paper.
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Fig. 1 |. Somatic mutations in single neurons in control individuals and individuals with AD.
a, Experimental outline for scWGS. From human brain, large neurons were isolated and 

their genomes were amplified, sequenced, and analysed for sSNV. FANS, fluorescence-

activated nuclear sorting. b, FANS using AF488-conjugated anti-NeuN antibodies to label 

candidate neurons for separation from glia and other cell types. Boxes show the full 

population of DAPI+ diploid cellular nuclei (blue dashed box); the overall population of 

NeuN+ nuclei (pink dashed box); and the large NeuN+ subset (black box; the subject of 

this study). c, Single-nucleus transcriptomic profiling of each population. Individual cells 

are plotted according to t-distributed stochastic neighbour embedding (t-SNE) coordinates, 

and clusters of 50 cells or more are annotated50 and labelled by colour, with a pie 

chart of the relative abundance of excitatory neurons, inhibitory neurons and glia in 

each population. OPC, oligodendrocyte precursor cell. d–l, sSNVs identified using MDA 

genome amplification. d–f, sSNVs in neurotypical control neurons. Data points represent 
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single neurons; trend lines show linear mixed models (PFC: P = 3.3 × 10−7, R2 = 0.63; 

hippocampus (HC): P = 0.16, R2 = 0.18). g, Contribution of ageing signature A to sSNVs 

(P = 1.67 × 10−10, R2 = 0.68, linear mixed model). h, sSNVs as a function of age in 

neurotypical control individuals and individuals with AD (linear mixed model trend lines: 

blue, control: P = 6.8 × 10−7, R2 = 0.51; red, AD: P = 0.46, R2 = 0.01). AD contributes 

a significant excess of sSNVs in neurons relative to normal ageing (P = 6.5 × 10−5, linear 

mixed model). i, AD neurons show increased sSNVs compared with age-matched (over 50 

years old) control neurons (874 sSNVs per neuron, P = 7.1 × 10−5, two-tailed Wilcoxon 

test). j, k, Excess sSNVs attributable to AD in the PFC (j) and the hippocampus (k). The 

dashed blue line shows sSNVs attributable to age (zero excess). For i–k, black bars show 

mean ± s.e.m. l, Circos plot showing the wide distribution of sSNVs across the genome in 

AD neurons.

Miller et al. Page 37

Nature. Author manuscript; available in PMC 2022 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2 |. Somatic mutational signatures and patterns in AD neurons by MDA.
a, Somatic mutational signatures identified by NMF5. b, c, Signature A contribution by age 

(b; AD excess 418, P = 3.1 × 10−4, linear mixed model) and in individuals with AD versus 

age-matched control individuals (c; 27% increase in AD, P = 0.10, two-tailed Wilcoxon 

test). d, e, Signature C contribution by age (d; AD excess 549, P = 1.4 × 10−3, linear 

mixed model) and in individuals with AD versus control individuals (e; 104% increase 

in AD, P = 8.7 × 10−8, two-tailed Wilcoxon test). f, Oxidative damage in AD neurons, 

using 8-oxoG immunofluorescence. Data points represent mean absorbance units (AU) ± 

s.e.m. of n = 100 neurons per case in PFC (full data in Extended Data Fig. 7). Trend 

lines show linear mixed-effects regression (AD versus control: P = 1.2 × 10−6). Inset shows 

representative immunofluorescence images; neurons (NeuN; green) and oxidized guanine 

(8-oxoG; magenta). Scale bars, 60 μm. g, Genomic sSNV density as a function of gene 

expression in the brain. Diamonds represent mean relative sSNV density in single neurons 

(black vertical lines show s.d., n = 1,000 permutations). Overall trend line is shown in 

black (R2 and P value, Pearson correlation); 95% confidence interval (CI) in grey; and 
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AD and control trend lines in colours. h, GO analysis of genes mutated in single neurons. 

i, sSNVs by DNA strand template status. sSNVs in transcribed regions exhibit a strand 

bias in the excess mutations in AD neurons, which is most pronounced in C>A variants 

(*P = 0.017, two-tailed Poisson test). j, Coding mutation subtypes, in which increased 

nonsynonymous mutations in AD (P = 1.6 × 10−5, two-tailed t-test) increase the propensity 

for presentation of neoantigen peptides. k, sSNVs that result in gene knockout cells. Model 

for the abundance of neurons with gene inactivation, affecting function. Circles represent 

mean for each individual, (n > 3 neurons each, see Source Data), with 95% CI. c, e, j, Data 

are mean ± s.e.m.
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Fig. 3 |. Profile of somatic mutations in single AD neurons by PTA.
Single-neuronal nuclei were isolated from control and AD prefrontal cortex and subjected to 

PTA whole-genome amplification for scWGS. a, sSNVs as a function of age in neurotypical 

control individuals (blue) and individuals with AD (red). Blue and red lines show linear 

mixed model trend lines for each group (control: P = 2.0 × 10−16, R2 = 0.90; AD: P = 

6.57 × 10−7, R2 = 0.59). By PTA, AD contributes a significant excess of sSNVs (196 per 

genome) in neurons compared to the normal ageing trend line (P = 3.9 × 10−4, linear mixed 

model). b, c, PTA-called sSNVs by mutational signature in each individual neuron. sSNV 

contributions are shown as a function of age for signature A (b; AD versus control P = 

0.04, linear mixed model) and signature C (c; AD versus control P = 5.3 × 10−3, linear 

mixed model). d, Transcriptional influence on somatic mutation in neurons profiled by PTA. 

Genes with higher expression levels show increased overall and signature A density and 

decreased signature C density. Data points represent mean sSNV density relative to expected 

density based on the mutation trinucleotide context, with black vertical lines showing s.e.m. 

Controls represent age-matched (over 50 years old) neurotypical neurons. Overall trend line 

is shown in black; 95% CI in grey; and separate AD and control trend lines in colours. 

R2 and P values are shown for Pearson correlation. e, sSNVs by DNA strand template 

status. sSNVs in transcribed regions exhibit a strand bias in the excess mutations in AD 

neurons. For each nucleotide change, the proportional contributions of the transcribed and 

the untranscribed strand are shown. The strand bias ratio data in PTA-amplified neuron data 

showed a similar trend to that seen in MDA-amplified neurons.

Miller et al. Page 40

Nature. Author manuscript; available in PMC 2022 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4 |. Model of the role of somatic mutations in AD pathogenesis.
Amyloid-β(Aβ) oligomers initiate a cascade of events, including the conversion of 

tau to neurofibrillary tangles and the accumulation of ROS. After DNA damage by 

ROS or other mutagens, somatic mutations develop with characteristic features of 

signature C. NER affects the strand and gene distribution of somatic mutations, and 

rare base misincorporation during repair may also have a role in the progression 

from DNA damage to mutation. These somatic mutations stand to increase cellular 

vulnerabilitybymechanismsincludinggeneinactivationandneoantigenpresentation.
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