1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
Nat Rev Neurol. Author manuscript; available in PMC 2025 June 24.

-, HHS Public Access
«

Published in final edited form as:
Nat Rev Neurol. 2024 August ; 20(8): 457-474. doi:10.1038/s41582-024-00988-2.

Multifaceted roles of APOE in Alzheimer disease

Rosemary J. Jacksonl2, Bradley T. Hyman!.2:3= Alberto Serrano-Pozol:2:3=
1Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.

2Harvard Medical School, Boston, MA, USA.

3Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA, USA.

Abstract

For the past three decades, apolipoprotein E (APOE) has been known as the single greatest genetic
modulator of sporadic Alzheimer disease (AD) risk, influencing both the average age of onset and
the lifetime risk of developing AD. The APOEe4 allele significantly increases AD risk, whereas
the 2 allele is protective relative to the most common &3 allele. However, large differences

in effect size exist across ethnoracial groups that are likely to depend on both global genetic
ancestry and local genetic ancestry, as well as gene—environment interactions. Although early
studies linked APOE to amyloid-p — one of the two culprit aggregation-prone proteins that define
AD — in the past decade, mounting work has associated APOE with other neurodegenerative
proteinopathies and broader ageing-related brain changes, such as neuroinflammation, energy
metabolism failure, loss of myelin integrity and increased blood—brain barrier permeability, with
potential implications for longevity and resilience to pathological protein aggregates. Novel mouse
models and other technological advances have also enabled a number of therapeutic approaches
aimed at either attenuating the APOEe4-linked increased AD risk or enhancing the APOEe2-
linked AD protection. This Review summarizes this progress and highlights areas for future
research towards the development of APOE-directed therapeutics.

Introduction

Since the identification of the amyloid-B (AB) peptide as one of the two culprit aggregation-
prone proteins (together with tau) in 1984 (ref. 1), Alzheimer disease (AD) research has
matured to the point that disease-modifying drugs that target A are becoming available for
clinical use?~*. Similarly, since its discovery in 1993 (ref. 5), our understanding of the link
between the apolipoprotein E (APOE) gene and AD risk has gained exciting momentum.
Indeed, in the past decade in particular, we have witnessed unprecedented progress in the
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areas of APOE-related genetic epidemiology, neuropathology, biomarkers, pathophysiology
and therapeutics. Each of these advances has greatly broadened the scope of APOE research
from its role in AD to those in AD-related dementias, from its interaction with AP to those
with tau and other aggregation-prone proteins, and from a mere lipid transport function to
complex cell-autonomous and non-autonomous effects involving virtually every brain cell

type.

Although early studies linked APOE to AB, a mounting body of research has associated
APOE with other neurodegenerative proteinopathies as well as with broader ageing-related
brain changes, such as neuroinflammation, energy metabolism failure, myelin integrity and
blood-brain barrier permeability. Furthermore, evidence has revealed potential implications
for APOE in longevity and resilience to pathological protein aggregates. This new evidence
has also expanded the repertoire of striking differences in behaviour across APOE isoforms,
even though they differ in only two amino acid residues. Novel mouse models, gene delivery
and silencing and other technological advances have also uncovered a number of approaches
by which APOE could be therapeutically targeted.

In this Review, we will summarize the current perspectives on genetic, neuropathological,
biomarker, pathophysiological and therapeutic aspects of APOE. First, we provide an update
on APOE genetics, including the marked changes in APOE-linked AD risk driven by
genetic ancestry, specific genetic madifiers and certain APOE mutations. Then, we cover the
neuropathological, biomarker and clinical correlates of the APOE genotype and discuss the
controversies around direct versus indirect effects of APOE on proteinopathies other than
AB. Next, we detail the normal structure and function of APOE and the pathophysiological
consequences of APOE isoforms with respect to aggregation-prone proteins (A, tau, a-
synuclein and TDP-43) and to the function of various brain cell types (astrocytes, microglia,
neurons, oligodendrocytes and blood-brain barrier). Finally, we review the main therapeutic
approaches tested in mouse models to date and posit that this body of knowledge is mature
enough to be leveraged towards the development of disease-modifying drugs with the
ultimate goal of preventing and/or slowing down AD progression.

Genetic basis of the APOE locus

The APOE gene maps to chromosome 1933 (Fig. 1) and is part of a cluster of related
genes with APOCI, APOC4and APOCZ2. The APOE variant linked with sporadic AD risk
is a haplotype consisting of two single-nucleotide polymorphisms (SNPs), rs429358 (T/c,
p.C112R) and rs7412 (C/t, p.R158C), which determine a single amino acid substitution —
arginine (Arg) or cysteine (Cys) — in positions 112 and 158, resulting in three alleles:

e2 (Cys112, Cys158), e3 (Cys112, Arg158) and e4 (Argl12, Argl58). APOEe=3 is the
most common allele in the general population, representing ~80% of alleles, and is used
as reference®’. APOEe4 increases the risk of developing AD, and APOFe?2 is protective
against developing AD in a dose-dependent fashion, so that APOEe4 homozygotes have
the highest risk and the rare APOEe2 homozygotes have the lowest® -8, Traditionally,
APOEe3/e4 individuals and APOEe4 homozygotes were asserted to have ~2—-3 and ~9-12
times higher risk of AD than APOEe3 homozygotes (reference group), respectively, and
APOEe2/¢3 carriers were believed to have about half the risk of APOEe3 homozygotes®’.
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However, the effect size of the APOE genotype on AD risk is now known to depend on a
number of variables, including demographics such as race and ethnicity, age and sex, and
whether the AD diagnosis is made on clinical or neuropathological® grounds, or confirmed
with biomarkers®.

Influence of genetic ancestry in APOE effects

The classic view of the dose-dependent APOEe4-linked increase in AD risk and APOEe2-
linked protection against AD is currently being redefined owing to the application of
modern genetic epidemiology methods to large populations of diverse ancestry. The initial
intriguing observation that the APOEe4 allele increases AD risk differentially across races
and ethnicities, with the greatest increase in risk seen in East Asian people, followed by
white, then Black, then Hispanic people®, has now been confirmed by a larger meta-analysis
using not only self-reported race and ethnicity but also global genetic ancestry to ascertain
the biological basis of these demographics1?. In the analysis, APOE allele frequencies for
East Asian, white, Black and Hispanic people were as follows: APOEe2 carriers 5.6%,
11.1%, 19.7% and 10.6%; APOEe3 homozygotes 72.8%, 50.6%, 43.3% and 61.3% and
APOEe4 carriers 21.6%, 40.6%, 41.6% and 29.9%, respectivelyl9, Even more puzzling
than these differences in APOEe4-linked AD risk are those associated with the APOEe2
allele; this study found that the protective effect of APOEe?2 is attenuated in Black versus
white people, whereas in Hispanic and East Asian individuals, the APOEe? allele confers
essentially no protection against AD relative to APOEe3 homozygosis, and only in the
presence of APOEe4 does APOEe?2 confer protection in Hispanic peoplel? (Fig. 2).

Deciphering the substrate (substrates) of ethnicity and race-based differences in the odds

of developing AD associated with the APOFE genotype could provide new molecular
targets for prevention and therapeutic development. Besides the effects of global genetic
ancestry causing variability across the genome — for example, higher Amerindian and
African American global ancestry might attenuate APOFe4-linked increased AD risk10:11
— differences in local ancestry causing genetic variability around the APOE locus are a
major focus of investigation1213, Interestingly, APOE mRNA expression levels seem to be
higher in astrocytes from APOEe4 homozygous individuals with European versus African
local ancestryl4; this observation could be owing to substantial differences in the frequency
of certain SNPs that impact the regulation of the APOE gene expression®.

Influence of sex and age in APOE effects

The odds of AD associated with the APOE genotype are not uniform across age or sexes.
Rather, age and sex moderate the effects of the APOE genotype on AD risk so that the
risk associated with the APOEe3/e4 genotype is highest in women of ages 60-70 years
(or 70-80 years according to ref. 6) but decreases in older women and equalizes to that

of non-Hispanic White, Black and Hispanic men of the same agel?. Notably, this age x
sex interaction with the APOEe3/e4 genotype was not only seen in non-Hispanic White
people but also replicated in Black and Hispanic individuals via meta-analysis of both
groups, suggesting that the interaction is independent of race and ethnicityl9. This finding
has implications for genetic counselling and design of prevention clinical trials. As shown
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subsequently, the biological basis of this interaction between APOE and both sex and age
has begun to be unravelled but remains poorly understood.

Genetic modifiers of APOEe4-linked AD risk

Although APOEe4 homozygosity may approach 100% penetrance for AP deposition in
the brain1®, even for white or East Asian people, being homozygous for APOEe4 is

not synonymous with developing AD dementia; the lifetime risk up to age 80-85 years

for mild cognitive impairment or dementia owing to AD has been estimated as 30-55%
for APOEe4 homozygotes, 20-25% for APOEe3/e4 carriers and 10-15% for APOEe3
homozygotes according to population-based studies with a majority of individuals of
European ancestryl’18, |arge meta-analyses of genome-wide association studies (GWAS)
have uncovered more than 80 other risk and protective locit®20 that could potentially
augment or attenuate the APOE-linked AD risk. This moderating effect has been elegantly
shown by comparing the polygenic risk score (PRS) of a cohort of people homozygous for
APOEe4 who either had early-onset (<65 years) AD or were still cognitively unimpaired
at age >75 (‘resilient’); the resilient cohort had a much lower PRS than the early-onset
cohort?L, Similarly, individuals with subjective cognitive decline and APOEe4 carriers were
more likely to advance to AD dementia if they had a high PRS (calculated without APOE),
whereas a low PRS attenuated the APOEe4 effect size?2.

Several other SNPs not revealed by GWAS have been shown to attenuate the risk of

AD associated with the APOEe4 allele. Of particular interest is the longevity-increasing
KLOTHO-VS heterozygosity, which has been reported to operate by decreasing A
plaque deposition, tau accumulation and tau-mediated cognitive impairment23-26, CASP7
rs10553596 and SERPINA3rs4934-A/A have also been suggested to confer resilience
against AD in people homozygous for APOEe4 aged >75 years?’.

Non-genetic modifiers of APOEe4-linked AD risk

Besides genetic modifiers, non-genetic acquired factors comprising the AD exposome — for
example, education attainment, exercise, diet, cardiovascular risk factors, hearing loss and
pollution?8:2% — could also moderate the effect of APOE on AD risk and partly explain
ethnoracial differences in effect size. Indeed, some studies have suggested an interaction
between APOE genotype and several of these modifiable risk factors, whereby carrying the
APOEe4 allele would multiply the increased AD risk associated with the risk factor alone
(for example, cardiovascular risk factors3%) or counteract the reduced AD risk conferred by
a protective factor, such as education attainment3! or physical exercise32. However, not all
epidemiological studies have detected these interactions33. By contrast, reported estimates
of the population attributable fraction of dementia for these modifiable risk factors, meaning
the percentage of dementia cases that could be prevented if each factor was eliminated from
the population, are higher in Black and Hispanic people than in white and Asian people,
which points to complex genome x environment interactions34:35. More epidemiological
research is needed to confirm these APOE gene x environment interactions, and more
preclinical studies to dissect the underlying mechanisms.
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APOE mutations

Aside from the APOEe2, £3 and 4 alleles, several other rare missense variants in the APOE
gene have been reported to influence AD risk and age of symptom onset (Table 1 and Fig.
1).

R136C (Christchurch). The R136S (Christchurch) mutation has been reported to confer
protection against AD on the basis of a unique individual carrying the PSENI E280A
mutation who was homozygous for the APOEe3 allele with the R136S mutation36. This
woman had an expected age of symptom onset of 44 years but did not present with mild
cognitive impairment until her 70s and exhibited lower than expected tau PET radiotracer
uptake. In addition, the woman had relatively preserved precuneus metabolism shown

by 18F-fluoro-deoxy-glucose (FDG)-PET, despite substantial A PET radiotracer uptake
and hippocampal atrophy, and at autopsy examination had an atypical distribution of
neurofibrillary tangles, with greater density in the occipital cortex than in the frontal cortex
and hippocampus3®, suggestive of the posterior cortical atrophy variant of AD.

APOE R136S is a very rare mutation (0.0004% allele frequency in the European
population3’) that was originally described in APOEe?2 alleles of people with type 111
hyperlipoproteinaemia3®:39, but is much more common in APOEe3 homozygotes than in
any other genotype and has also been associated with increased plasma apolipoprotein

B (APOB) levels®’. The protective effect of the APOE R136S mutation seems to

require homozygosis, given that four individuals with PSENI-E280A and heterozygous for
APOEe3R136S developed mild cognitive impairment at the expected age of 45 years3® and
some APOFEe3R136S heterozygous individuals with autopsy-proven AD had early onset of
symptoms*?,

R145C. The R145C mutation has been reported only in the APOEe3 allele in individuals
with African ancestry and has been associated with both a ~2-3-fold higher risk of AD and
an earlier age of symptom onset in those with the APOEe3R145C/e4 genotype??.

V236E (Jacksonville). The V236E (Jacksonville) mutation has been described only in
the APOEe3 allele and reduces the risk of AD down to that of APOEe?2 carriers or even
further#243, This mutation has been associated with a reduction in fibrillar Ap plague by
amyloid PET and neuropathological examination®4.

Neuropathological correlates of APOE genotype in late life

What are the specific neuropathological correlates of the APOE genotype? The

answer is not straightforward considering the prominent differences in AD risk across
genetic ancestries and that most studies addressing this question have been conducted

in samples with a majority of non-Hispanic white participants, thus limiting their
generalizability to other ethnoracial groups. Although multimodal biofluid and imaging
biomarker studies are offering a unique opportunity to study the neuropathological
correlates of APOE longitudinally in living individuals (Box 1), genetic—neuropathological
correlation studies remain insightful, particularly given the frequent finding of multiple
potential neuropathological contributors to cognitive impairment, some of which lack
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a useful biomarker such as TDP-43 pathology*®. Thus, next we review our current
understanding of APOE neuropathological correlates with a special emphasis on non-AD
neuropathologies, presenting either comorbid with AD neuropathological changes or as
primary neuropathological diagnoses.

APOE and AD neuropathological changes

Relative to the APOEe3 homozygote reference group, carrying one or two APOEe4 alleles
is independently associated with a higher Ap plaque burden and more severe cerebral
amyloid angiopathy (CAA), whereas APOEe2/e2 and e2/e3 individuals have fewer AR
plaques*6-50 but are more likely to have CAASL, Of note, although CAA typically affects
leptomeningeal and cortical medium- and small-sized arteries, a subtype of capillary CAA
has been associated with APOEe4 carriage®1:52, In contrast to Ap pathology, the existence
of a direct effect of APOE genotype on the severity of tau neurofibrillary tangle pathology
remains controversial, with most studies agreeing that APOEe4-linked effect on tangles is
primarily indirect, mediated through its increase of AB plaque burden#6-48:53, By contrast,
APOEe2 has been found to have both direct and indirect (through AB) protective effects
against tangle pathology*8-4°.

The APOEe2/e4 genotype has been comparatively less studied owing to researchers either
including this genotype within the APOEe4" group because of its low frequency or
deliberately excluding it to avoid potential confounding of their results by a putative
cancellation of the effects of these opposite alleles. However, relative to APOEe3
homozygotes, APOEe2/e4 carriers have greater AR plaque burden®?, increased CAA
severity®0 and increased odds of macroinfarcts®®, whereas differences in tangle burden

are conflicting®®:54, Of note, APOFe2/e4 individuals have a particularly high risk of
intracerebral lobar haemorrhage in the presence of CAA®C, possibly because the APOEe2
allele has been associated with fibrinoid necrosis of the vessel wall®6:57, Qverall, these data
indicate that the APOEe4 allele is functionally dominant over the APOEe? allele.

APOE and cerebrovascular diseases comorbid with AD

AD is frequently accompanied by cerebrovascular disease?>:°8, Compared with APOFe3
homozygosis, APOEe4 carriage has been independently associated with increased
cerebrovascular burden in the form of gross (macro) infarcts in some studies®, but not
others®0, whereas APOEe? is associated with more severe ischaemic small vessel disease in
the form of arteriolosclerosis, especially in individuals aged 90 years and older®®. Neither
allele is associated with atherosclerosis in the circle of Willis or microinfarcts®®.

APOE and other neurodegenerative diseases comorbid with AD

As with cerebrovascular disease, the co-occurrence of AD with other age-related
neurodegenerative proteinopathies such as a-synucleincontaining Lewy bodies and neurites
in the neocortex, amygdala and substantia nigra, and TDP-43-containing neuronal
cytoplasmic inclusions and dystrophic neurites in the hippocampus and amygdala — the so-
called limbic-predominant age-related TDP-43 encephalopathy neuropathological changes
or LATE-NC — is not uncommon, and they cooperate to worsen cognition®®-61, Carriers
of the APOEe4 allele have increased odds of a multi-proteinopathy, whereas carrying the
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APOEe? allele reduces these odds, relative to APOFe3 homozygosis®9-61. Specifically,
APOEe=4 carriage has been independently associated with increased odds and severity of
Lewy body pathology9:62 and TDP-43 pathology®9-63:64 and with the presence of TDP-43-
related hippocampal sclerosis®3 in the scenario of a primary neuropathological diagnosis of
AD.

APOE and primary neurodegenerative diagnoses other than AD

Converse to the APOEe4-associated increased likelihood of comorbid proteinopathies

in people with AD, the APOEe4 allele also correlates with the presence of AD
neuropathological changes in people with a primary neuropathological diagnosis

of amyotrophic lateral sclerosis, neocortical Lewy body disease (LBD), primary
tauopathies including Pick’s disease, progressive supranuclear palsy (PSP) and corticobasal
degeneration and multiple system atrophy5. However, the association between the

APOE genotype and ‘pure’ non-AD primary neuropathological diagnoses in which AD
neuropathology is absent or minimal is highly controversial, as discussed subsequently.

Tauopathies. One study found that the APOEe? allele is associated with increased odds
of neuropathologically confirmed primary tauopathy (PSP and corticobasal degeneration)®6.
However, another study failed to find such association®” and in a third study the significance
of the association was lost when adjusting for AD neuropathological changes*?, suggesting
a spurious association owing to the strength of the APOEe4—AD link. The first study® also
found increased numbers of tau inclusions, including oligodendroglial coiled bodies, tufted
astrocytes and neuropil threads, and an up-trend for neurofibrillary tangles in APOEe?2
carriers with autopsy-proven PSP. Of note, APOEe4 has been associated with greater
severity of chronic traumatic encephalopathy®®.

a-Synucleinopathies. APOFEe4 has been associated with a faster rate of cognitive decline
in people with Parkinson disease, independent of AD neuropathology assessed by levels

of CSF biomarkers AB42 and pTau®®. Furthermore, the 4 allele has been associated

with increased risk of a dementia presentation in people with pure a-synucleinopathies’0.
APOEe4 has also been associated with the burden of a-synuclein inclusions in LBD with
minimal AD co-pathology52.71, although other studies have only found an association
between APOEe4 and LBD in the presence of AD neuropathology, but not in pure
LBD2.73, By contrast, no association has been found between the APOE genotype and

a primary neuropathological diagnosis of multiple system atrophy®7:74,

TDP-43 proteinopathies. An association between the APOEe2 allele and higher levels
of TDP-43-positive dystrophic neurites (but not neuronal cytoplasmic inclusions) in the
motor cortex of individuals with amyotrophic lateral sclerosis and frontotemporal lobar
degeneration-TDP has been reported’>.
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Other correlates of APOE genotype in late life

Cognitive correlates

The well-established association between APOE genotype and cognition — whereby
APOEe4 accelerates age-related cognitive decline’® and APOEe2 delays it’” — is

largely mediated by genotype-specific effects on AD neuropathological changes and, to

a lesser extent, on comorbid pathologies*6-48.78.79 However, after controlling for the
presence and severity of AD neuropathology and comorbid pathologies, carrying the
APOEe4 allele might still accelerate the rate of cognitive decline in the normal ageing-
sporadic AD continuum, whereas carrying the APOEe2 allele might slow down cognitive
decline?”:77:80.81 Thijs observation suggests that APOE drives differential neurotoxic effects
or neural network vulnerability that is independent of neuropathology severity. Remarkably,
APOEe4 can accelerate age-related cognitive decline even in genetically determined AD,
such as familial autosomal dominant AD3! and Down syndrome82, whereas APOFe?2 can
delay age of onset even in familial autosomal dominant AD83,

Cardiovascular risk

APOE genetic variants are known to affect serum cholesterol levels and cardiovascular

risk. Indeed, several GWAS have linked the rs4420638 and rs10402271 SNPs of the
APOE-APOC cluster with higher serum LDL cholesterol levels and an increased risk

of coronary artery disease848. By contrast, APOFEe2 has been associated with reduced

risk of coronary and carotid artery diseases in diverse populations. In large health
registries such as the UK BioBank, the APOEe4 allele has been associated with higher

LDL cholesterol and triglycerides levels, lower HDL cholesterol levels and an increased

risk of coronary artery disease. By contrast, in the same registries, APOEe2 has been
associated with lower LDL cholesterol levels, increased triglyceride levels and increased risk
of peripheral vascular disease”-88. The rare APOEe2 homozygotes are at increased risk of
developing hyperlipoproteinaemia type 111 (also known as familial dysbetalipoproteinaemia),
characterized by very high triglyceride levels®. These observations reflect the differential
effects of APOE isoforms in lipid metabolism, which will be discussed further in the section
‘Current perspective on APOE pathophysiology’.

Impact on survival versus mortality

Several studies of large populations of individuals from European ancestry have raised

the possibility that APOE is a longevity gene, with the APOEe2 variant associated with
longer survival and the APOEe4 with shorter survival in a dose-dependent manner®0-94, Of
note, contrary to expectation, these associations seem to be independent of baseline serum
LDL cholesterol®, cardiovascular risk?3%4 and even AD diagnosis or the burden of AD
neuropathology94. Together, these observations argue against underlying competing risks
and suggest that as-yet-unknown mechanisms mediate the impact of APOE on survival.
Conversely, the APOE=4 allele has been proposed to hold evolutionary health benefits
earlier in life that might explain its high frequency in the general population (Box 2).

Nat Rev Neurol. Author manuscript; available in PMC 2025 June 24.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Jackson et al. Page 9

Current perspective on APOE pathophysiology
What is APOE?

APOE is a protein canonically secreted to the extracellular space where it functions as a
lipid transporter9®. In the CNS, APOE is produced predominantly by astrocytes, although

it can also be produced by reactive microglia and, to a lesser extent, stressed neurons and
other glial cells%:97. Lipids are loaded onto APOE via transmembrane ATP-binding cassette
(ABC) transporters such as ABCA1 and ABCG1 (ref. 98) (Fig. 2a). The structure of APOE
changes markedly upon its binding to lipids to form lipoprotein particles, and the different
APOE isoforms are predicted to undergo this change in structure at different rates, which
partly influences their affinity for lipoprotein particles of different sizes?9-100-

Cryo-electron microscopy of APOE lipoprotein particles secreted from astrocytes in culture
has revealed that APOE forms an anti-parallel dimer that wraps a discoidal lipoparticle in

a ‘double-belt” configuration01, APOE3 has a higher affinity for HDL, whereas APOE4 is
more likely to bind LDL and VLDL192, This difference affects the amount and type of lipids
that APOE can deliver within the brain but also changes the affinity of APOE for its various
receptors (reviewed elsewherel93). Receptor binding is likely to be a key mechanism by
which APOE isoforms regulate AD risk, as modulation of these receptors has been shown to
affect AD neuropathology%4-108; however, greater understanding of how this effect occurs
is needed.

APOE protein interactions

Amyloid-p. The link between APOE4 and A has been studied extensively for the past
three decades, and the interaction between the two proteins has now been established as one
of the mechanisms by which the APOFe4 allele increases AD risk109. APOE4 is associated
with increased AP deposition, and the mechanism behind this is multifaceted. Before

the seminal genetic studies identifying APOFe4 as a risk factor for AD® and APOEe?2

as protective’, APOE was found to co-deposit with both cerebral and systemic amyloid
deposits. Thus, APOE was proposed to be acting as a molecular chaperon to promote the
seeding and misfolding kinetics of ABL10— a hypothesis that has been supported by more
recent work!11, Indeed, APOE affects the seeding and aggregation of A in an isoform-
dependent manner!12, and the increased propensity of Ap to oligomerize in the presence

of APOE4 is considered a major mechanism by which APOE4 increases AD risk113-116
(Fig. 2¢). In several different Ap plaque-depositing mice that are genetically engineered

to express the human APOE isoforms instead of mouse APOE (Box 3), APOE4 induces
greater A fibrillization and deposition in compact plagues relative to APOE3, whereas
APOE2 markedly delays the onset and decreases the extent of AB plaque deposition17-120,
Moreover, in these mouse models, APOE4 has also been shown to impair AP clearance
relative to APOE3, with APOE4-AB complexes exhibiting a lower binding affinity for
APOE receptors, which results in a slower receptor-mediated clearance and a longer half-life
of AB in APOE4 micell’ (Fig. 2e).

Besides promoting AP aggregation and impairing its clearance, APOE isoforms can also
differentially influence the transcription of Ap precursor protein and the generation of
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1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Jackson et al.

Page 10

AB; these factors are most increased by APOE4, followed by APOE3, then APOE2 (ref.
121). Apoe knockout plague-depositing mice highlight the complexity of the APOE-AR
interaction, as these mice still exhibit deposition of AB plaques, but the plaques are less
compact and do not cause the synaptic and cognitive deficits typical of plaque-depositing
mice with Apoe intact!17119.122 These preclinical data, together with a case study of an
APOE null individual with hyperlipoproteinaemia type I11 but normal cognition and AD
biomarkers!23, indicate that lowering APOE expression levels is a valid therapeutic strategy.
However, antisense oligonucleotide therapy in mice suggests that lowering APOE levels is
less effective after plaque deposition than before plaque deposition24, which reinforces the
idea that Ap plaque deposition is a multistep process.

Tau. Although for many years the effects of APOE on tau were assumed to be

mediated through AR, animal and cell models of tauopathies have revealed that APOE4

is associated with a greater burden of misfolded and hyperphosphorylated tau and more
severe tau-induced neurodegeneration, both in the presence and in the absence of Ap125:126,
Specifically, in a tauopathy mouse model (PS19, overexpressing the MAPT P301S mutation)
crossed with APOE-targeted replacement mice (Box 3), APOE had a marked isoform-
dependent effect on tau pathology in the absence of Ap plaques, with APOE4/PS19 mice
showing the greatest extent of tau neurofibrillary tangle pathology and neuronal loss and
APOE2/PS19 mice the lowest!27 (Fig. 2f). Although the different APOE isoforms did differ
in their propensity to induce pTau and tau aggregation, of greater importance was the

much higher level of tau-induced neurodegeneration in the APOE4/PS19 mice. Importantly,
Apoe knockout/PS19 mice were relatively spared from any neuronal and hippocampal
volume loss when compared with any of the APOE-expressing mice, despite similar levels
of tau accumulation compared with APOE3/PS19 micel?’. These results bear a striking
resemblance to those from the AR plaque-depositing micel2%:128 and indicate that the effect
of APOE4 in AD is due not only to the increased propensity of proteins to aggregate

in the presence of APOE4, but also to the way APOE4 modulates the brain response to
those aggregates once formed. This observation is crucial for therapeutic development as

it suggests that targeting APOE holds therapeutic potential despite high aggregate burden,
thus after symptom onset in AD. Indeed, mounting evidence shows that APOE downstream
effects converge on the microglial response to protein aggregates, as further discussed
subsequently129.130,

a-Synuclein. The strong association between APOE4 and Ap has overshadowed possible
links between APOE and other aggregation-prone proteins. Studies using APOE-targeted
replacement (APOE-TR) mice crossed with mutant a-synuclein (aSyn) mice have reported
that APOE4 mice have increased aggregation of aSyn, whereas APOE2 mice have very
limited aSyn aggregates. Furthermore, the APOE2 mice have improved motor function and
prolonged survival compared with APOE3-expressing mice, suggesting that the effect of
APOE on a-synucleinopathies is independent of its effect on A®9. Biochemical studies
indicate that APOE4 increases the seeding potential of aSyn131:132 and further mouse
studies have shown that APOE4 alters the proteolytic processing of aSyn. Together, these
results highlight again the multifaceted effects of APOE4 on protein aggregation32, More
studies are required to understand the role of APOE in pure a-synucleinopathies.
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TDP-43. As APOE has been shown to exert effects on TDP-43 pathology in post-mortem
brains, mouse models might hold the key to understanding the impact of APOE isoforms
in this proteinopathy. A study using adeno-associated viral (AAV) vectors to overexpress
TDP-43 in the brains of APOE-TR mice of all three isoforms and in Apoe knockout

mice revealed that, surprisingly, APOE2-targeted replacement TDP43-overexpressing mice
have greater reactive gliosis, neurodegeneration and motor impairments’®, compared with
APOE3-TR, APOEA4-TR and Apoe knockout mice, which had very mild or no phenotypic
alterations. Although this study showed that APOE isoforms can differentially affect
TDP-43 pathology in the absence of Ap, further work is needed to uncover the underlying
mechanisms).

Propensity of APOE for aggregation

The differential effect of APOE isoforms on multiple proteins that are prone to pathological
misfolding and aggregation in p-pleated sheet-rich fibrils in the brain raises the intriguing
possibility that APOE acts as a chaperone of aggregation-prone proteins, with APOE4
having the greatest propensity to facilitate misfolding. Much work has gone into uncovering
the mechanisms by which APOE4 might increase the likelihood of pathological misfolding
and deposition of aggregation-prone proteins; however, APOE itself has also been shown
to form aggregates, particularly in its non-lipidated state?9-134.135 (Fig. 2). Whether these
multimers of APOE have a biological function remains to be clarified, but the propensity
of APOE, particularly APOEA4, to form dimers, tetramers and higher order oligomers

in solution has complicated attempts to get an accurate picture of the structure of the
protein99.135,

Intriguingly, the protective APOE Jacksonville mutation (Fig. 1) has been found to reduce
APOE oligomerization and A deposition, which could point to APOE oligomerization
being biologically detrimental and adds weight to the hypothesis that APOE oligomerization
might facilitate Ap oligomerization#*. Along this line, an antibody against non-lipidated
APOE, which is the version most likely to oligomerize, has shown promise in multiple

AD mouse models136-139 Computational and biochemical work from the past few years
has begun to elucidate the molecular underpinnings of APOE multimerization, but greater
understanding of how mutations in APOE affect its structure and both receptor- and lipid-
binding properties would propel the discovery of APOE-targeted therapeutics aiming to
prevent or slow down AD progression134.140.141,

Cell type-specific effects of APOE

Astrocytes. Astrocytes provide the vast majority of the cholesterol required by mature
neurons, and the APOE they produce is crucial for efficient cholesterol transport142,
Astrocytes derived from APOE4 human-inducible pluripotent stem cells (hiPSCs) are

less efficient at secreting lipidated APOE particles and exhibit impaired cholesterol
metabolism relative to APOE3 hiPSC-derived astrocytes43:144, This impairment is likely
to be detrimental first to astrocytes and, secondarily, to neurons and could “prime’ the brain
for neurodegenerationl4°. APOF4 astrocytes have an increased number of lipid droplets
and impaired glucose utilization and mitochondrial function, lending further support to this
hypothesis143.146.147 (Fig. 2b).
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Given that astrocytes are the primary producers of APOE in the brain, the cell-autonomous
and non-autonomous effects downstream of astrocytic APOE production have received
considerable attention. To study such effects, novel mouse models have been developed that
enable the removal of the APOE4 or APOE3 genes selectively from the astrocytes of APOE
knock-in mice (see ‘CureAlz’ APOE mice, Box 3). These studies have revealed that removal
of both astrocytic APOE3 and APOEA4 is protective against AB deposition in plaque-
depositing mice; specifically, plaque burden was lowered to the levels of Apoe knockout
micel48. However, only astrocytic APOF4 deletion, but not APOE3 deletion, significantly
ameliorated tau neurofibrillary tangle burden in tauopathy micel49. Interestingly, these
studies found that removal of astrocytic APOE reduced microglial reaction to Ap plaques
and neurofibrillary tangles, but that astrocyte response to plaques and tangles was largely
unchanged148:149, suggesting ‘paracrine’ effects of astrocytic APOE on microglia and
supporting the idea that APOE is essential in astrocyte—microglia crosstalk.

Microglia. Although APOE is predominantly produced by astrocytes in the healthy brain,
its expression is markedly upregulated by reactive microglia in the brains of individuals
with AD9:150, This upregulation is a key element of a conserved transcriptional signature
of reactive microglia that has been found in multiple neurodegenerative diseases190-151,
Together with triggering receptor expressed on myeloid cells 2 (TREMZ2), APOE has also
been shown to regulate microglial response to Ap plaques and neurofibrillary tangles in
AD as well as in other neurodegenerative diseases'®C. This so-called disease-associated
microglial (DAM) response is differentially regulated by the various APOE isoforms,
probably through their differential binding to specific surface microglial receptors such as
TREM2 (refs. 152,153) (Fig. 2d). Reactive microglia migrate towards AP plaques, surround
them and upregulate APOE, which binds to TREM2 and promotes plaque compaction®4,
This process is likely to explain why both Apoe knockout and 7remZ2 knockout plaque-
depositing mice exhibit reduced microglial reactivity against Ap plagues and their

plagques are less compact117:119.122.155 ‘|mportantly, this APOE- TREM?Z axis has also been
found in transcriptomic post-mortem analyses of human brains, with APOEe4 carriers
exhibiting a more prominent pro-inflammatory and phagocytic microglial transcriptomic
signature12.153, Moreover, evidence shows that this microglia-derived APOE has distinct
post-translational modifications when compared with APOE produced by astrocytes and
this, too, is isoform-dependent6,

Although this body of evidence has led many to propose that microglia-derived APOE
upregulates the DAM response in a cell-autonomous manner, new studies draw a more
complex picture. In contrast to complete Apoe knockout mice, microglia-specific Apoe
knockout AP plaque-depositing mice (Box 3) exhibit largely unchanged microglial and

AB phenotypes except for slightly larger plaques®’. By contrast, removing APOE4
specifically from microglia of APOE4/PS19 tauopathy mice rescued a neuroprotective
microglial signaturel57:158, Additionally, as mentioned earlier, the characterization of
microglia in astrocyte-specific Apoe knockout mice certainly indicates that microglia are
affected by astrocytic APOE148:149, Furthermore, APOE4 microglia-like hiPSCs show
decreased phagocytosis and increased inflammatory genes relative to APOE3 microglial43.
In summary, data from the past 5 years on novel mouse models support a complex interplay
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among microglia, astrocytes and AD neuropathology, but more research is needed to fully
understand this complexity.

Neurons. Similar to microglia, neurons produce APOE in times of stress, albeit to a
lesser extent%. The characterization of hIPSC-derived neurons indicates that neuronal
APOEA4 is associated with altered synaptic function, fatty acid accumulation and
hyperexcitability43. Mouse models expressing APOE3 or APOFE4 exclusively in either
astrocytes or neurons (Box 3) show that APOE3 from both cell types can protect against
neuronal hyperexcitability, whereas neuron-derived (but not astrocyte-derived) APOE4 is
detrimental159:160, A separate study has shown that removing APOE4 from neurons in

a tauopathy mouse model leads to a significant reduction in tau neurofibrillary tangle
pathology and tau-induced neurodegeneration161. This work highlights the important role of
neuron-derived APOE and underscores the need for a deeper understanding of the ways in
which APOE differs on the basis of the source cell type.

Oligodendrocytes. Post-mortem analysis of brain tissue has shown an association
between the APOEe4 allele and a reduced number of oligodendrocytes in the frontal cortex
after controlling for the severity of AD neuropathologyl62. Moreover, studies performed

in post-mortem brain tissue and in vivo using APOE knock-in mouse models have all
associated APOE4 with impaired myelination of oligodendrocytes resulting from altered
cholesterol transport163:164_ These studies indicate that cholesterol transport is impaired both
within oligodendrocytes!®3 and from astrocytes to oligodendrocytesi64. Interestingly, Apoe
knockout mice and LDL receptor (Ld/n-overexpressing mice — which display low levels
of APOE owing to internalization and clearance of APOE lipoproteins — have larger pools
of oligodendrocyte progenitor cells and increased myelin coverage of axons, supporting the
idea that APOE regulates oligodendrocyte number and function19,

APOE and cellular metabolism

The brain, and particularly its neurons, are energetically very demanding, and the regulation
of both cellular lipid content and mitochondrial function is essential for brain health.

In vitro studies have shown that fragments of APOE, which are more abundant with
APOE4 than with APOE3, can cause neuronal mitochondrial dysfunction165166, Further,
in vitro studies have indicated that this mitochondrial dysfunction partly results from a
blockade of mitophagy owing to APOE4-mediated lysosomal dysfunction, which leads to
an accumulation of damaged and dysfunctional mitochondrial in APOE4 carriers167-169,

In addition, in both a mouse model and human postmortem brains, APOEe4 is linked to
altered expression of proteins involved in mitochondrial fission and fusion, suggesting that
an alteration in mitochondrial dynamics might lead to or arise from impaired mitochondrial
function147.170,

Mitochondria have a key role in buffering and storage of calcium ions, which is crucial for
the correct functioning of neurons11:172, Impaired calcium flux has been observed in vitro
in an APOE4-expressing neuronal cell line compared with an APOE3-expressing line and
could be partially responsible for the hyperexcitability seen in APOE4 neurons in culturel’3,
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APOEA-TR mice exhibit multiple alterations of energy metabolism compared with APOE3-
TR mice, including impaired mitochondrial respiration in the cortex and hippocampus,
upregulation of oxidative phosphorylation genes in the entorhinal cortex and differential
levels of fatty acids and other metabolitesl”4. In particular, APOFE4 astrocytes and microglia
have increased glycolytic activity when compared with the same cells expressing APOE3
(refs. 175,176). Neurons shuttle fatty acids to glial cells via APOE, with APOE4 being less
efficient than APOES3 at this transport!?”. Glial cells then store excess free fatty acids in the
form of triglycerides and cholesterol esters in intracellular lipid droplets, which serve as an
energy storage until they are catabolized in mitochondria via p-oxidation, and this process
is compromised in the presence of APOE4 (refs. 146,177) (Fig. 2b). Work both in vitro and
in vivo has highlighted an APOE isoform-specific impact on lipid droplet accumulation in
astrocytes#6, neurons!’” and microglial’8. Notably, in 1907, Alois Alzheimer described an
accumulation of lipid droplets in astrocytes around senile plaques!?®.

Intriguingly, not only has APOE been shown to affect mitochondrial structure and function,
but also mitochondrial dysfunction has been shown to impact APOE gene and protein
expression and secretion€0,

APOE and the brain vasculature

APOE circulating in the blood is predominantly produced by the liver; however, the BBB
keeps this pool of peripheral APOE separated from that produced in the CNS181.182,
Nevertheless, peripheral APOE seems to influence the brain partly by impacting the BBB.
When compared with wild-type mice, both Apoe knockout mice and mice expressing
APOE4 have a leaky BBB, a phenomenon also reported in cognitively unimpaired and
mildly impaired individuals who carry an APOEe4 allele183-185, These observations have
led to the hypothesis that APOE4 constitutes a loss-of-function APOE variant with respect
to BBB maintenance. Indeed, when APOE4 was knocked out from astrocytes, the BBB
was able to repair itself, indicating that APOE4 produced by astrocytes is responsible for
this BBB leakage!®. A leaky BBB increases plasma proteins in the brain parenchyma,
thereby leading to oxidative stress and neuroinflammation, and is yet another mechanism
by which APOE could prime the brain for neurodegenerationl4®. Intriguingly, removal of
APOEA4 specifically from astrocytes of APOE4 knock-in plaque-depositing mice leads to
increased CAA but also increased BBB integrity, indicating that APOE4 itself could be more
deleterious for BBB integrity than the vascular Ap build-up8® (Fig. 2g).

Besides BBB integrity, APOE4 has a negative impact on cerebral blood flow and
neurovascular coupling; APOE4 mice show reduced cerebral blood flow both at baseline
and in stimulus-evoked paradigms, relative to APOE3 micel87-189 Moreover, APOE4

also reduces the density of blood vessels in these mice, thereby potentially impairing

oxygen availability to neurons!88, Importantly, the development of anti-Ap immunotherapies
has encountered a major roadblock precisely in the propensity of APOEe4 carriers

to BBB leakage: although the FDA-approved anti-Ap monoclonal antibodies are very
effective at removing AP from the brain parenchyma, a substantial proportion of treated
individuals, especially APOEe4 carriers, exhibit amyloid-related imaging abnormalities
(ARIA) consisting of oedema (ARIA-E) and haemosiderin deposits (ARIA-H)2. The risk
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of developing these potentially serious adverse effects is higher in APOEe4 carriers,
particularly homozygotes, and current recommendations are that patients are genotyped for
APOE before starting these therapies to offer a balanced benefit-risk discussion19.

APOE-targeted therapeutics

Given the high APOEe4 allele frequency and large effect size with respect to AD risk (at
least in populations of European and East Asian ancestry), as well as all its deleterious
consequences on brain homeostasis listed earlier, in 2024 a consensus panel®! concluded
that lowering APOEA4 levels is a reasonable approach to prevent or slow down AD
progression. This and other therapeutic strategies targeting APOE that have been explored to
date are summarized next.

Blocking APOE interactions

APOE4 is associated with increased oligomerization and deposition of A in vitro and in
vivol13.115.192 s hlocking the interaction between Ap and APOE is a promising strategy to
mitigate the facilitation of AP seeding and aggregation by APOE4. In mouse models, this
has been achieved using a small molecule mimetic homologous to the domain of Ap that
interacts with APOE but is modified to be more protease-resistant. This small peptide can
reduce the oligomerization of AB in vitro and ameliorate A and tau pathology in a triple
transgenic mouse model of AD193:194 (Fig. 3a). On the inverse of AB mimetics are APOE
mimetics, in particular, small peptides homologous to the receptor-binding region of APOE.
Such APOE mimetics have been shown to prevent microglial reaction in vitro, as well as A
deposition and associated memory deficits in APOF4 plaque-depositing micel9519, These
preclinical findings indicate that mimetic peptides designed to prevent APOE binding to
either AB or APOE receptors could be therapeutically viable.

Initial in vitro functional experiments with the APOE Christchurch protective mutation

(see the section ‘R136C (Christchurch)’) suggest that this mutation weakens the interaction
between APOE and heparan sulfate proteoglycans — located on the surface of neurons

and implicated in tau uptake — and, therefore, that blocking APOE-heparan sulfate
proteoglycan binding might have therapeutic value3® (Fig. 3a). This prediction was
confirmed in vivo in 2023 by two studies that used mouse models expressing human APOE3
or APOE4 with the Christchurch mutation, which showed amelioration of AD phenotypes
when compared with APOE3 or APOE4 mice, particularly those related to tau accumulation
and microglial responsel®7:198_Moreover, an APOE Christchurch-mimetic antibody that
disrupts APOE-heparin binding has shown promise in reducing tau hyperphosphorylation in
mouse models of tauopathy19°,

Increasing APOE?2 levels

Gene therapy has already been efficacious in other neurodegenerative diseases, most notably
spinal muscular atrophy290.201 Multiple laboratories are pursuing the development of gene
therapy approaches to express APOE2 in an APOE4 background. The introduction of human
APOE2 into plaque-depositing mice expressing endogenous mouse Apoe via AAV-mediated
delivery was shown to prevent and even reverse the deposition of Ap into plaques, whereas
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delivery of APOFE4 had the opposite effect!28 (Fig. 3b). Furthermore, in mice, administration
of APOE2 was found to be beneficial at reducing plaque deposition even in the presence

of APOE4, indicating that APOE2 can reduce some of the negative effects of APOE4 (refs.
202,203). Remarkably, the first human trial using AAV to express APOE2 in APOEe4
homozygotes has been initiated, and the reported safety results from this phase I trial are
promising despite the small number of participants2%4 (NCT03634007).

Decreasing APOEA4 levels

Immunotherapy using anti-APOE antibodies is another way of lowering APOEA4 levels in the
brain. An antibody that preferentially binds to non-lipidated APOE4 has shown promise in
reducing Ap plaques and CAA in a mouse model of B-amyloidosis, as well as decreasing
AB-driven tau seeding in micel37-139, Targeting of the non-lipidated version of APOE4

is predicted to be more successful than targeting the lipidated version, as non-lipidated
APOE is more likely to co-deposit with AB plaques and also to self-associate3? (Fig. 3c).
However, as with most immunotherapies, stimulating microglia via their Fc domain could
potentially have undesired detrimental effects on the brain139.205,

Another mechanism of decreasing APOE4 expression is using antisense oligonucleotides
against APOE4 (Fig. 3d). This method has been effective in mouse models of both Ap
plague deposition and tauopathy, although the timing of administration seems to be crucial
for success'24206, For example, starting before AB plaque deposition prevented AB plague
development, whereas animals treated after the onset of plaque deposition actually showed
an increase in AP plaque size and plaque-associated dystrophic neurites. These results
indicate that clinical trials with these therapeutics should be carefully designed24.

Increasing APOE lipidation

Aside from the aforementioned immunotherapy against specifically non-lipidated APOE,
efforts are also being made to increase the extent of APOE lipidation without directly
affecting APOE levels. Liver X receptors and retinoid X receptors are known to increase
APOE lipidation297:208 Bexarotene is an FDA-approved liver X receptor/retinoid X receptor
agonist for use in refractory cutaneous T cell lymphoma and has been shown to enhance

A clearance and improve cognitive performance in plaque-depositing mouse models20°,
However, in phase Ib and 11 trials, bexarotene increased cerebrospinal fluid APOE by only
25% and failed to reduce PET AP burden or alter brain AR metabolism, probably owing

to poor BBB penetration, although it caused hyperlipidaemia in most participants210.211,
More recently, peptide mimetics used to upregulate ABCA1 were shown to increase APOE4
lipidation and reduce AP deposition and cognitive deficits in APOE4 knock-in (but not
APOE3 knock-in) plaque-depositing mice, indicating that directly targeting APOE lipidation
is an effective therapeutic approach?12 (Fig. 3e).

Correcting APOE4 conformation

The single amino acid changes in the different APOE isoforms result in slightly different
structures, which have a strikingly large effect on the binding affinities of APOE to lipids,
AB and receptors?9:111.116,140 Nyitiple small molecules have been designed to “correct’ the
conformation of APOE4 so that it resembles that of APOE3 or APOE2 (refs. 213-217) (Fig.
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3f). Some of these molecules have been shown to be effective in cell models, whereas others
are in even earlier stages of development216.217,

Concluding remarks and future directions

APOE continues to be the strongest contributor to AD heritability, despite the discovery

of more than 80 risk loci in large GWAS over the past few years?C. In the past three

decades, the field has seen tremendous progress in the understanding of the role of APOE in
AD and other neurodegenerative diseases. Technological advances, including bioinformatics
approaches applied to big data such as massive electronic health records and multi-omics
datasets, cutting-edge structural protein biology methods such as cryo-electron microscopy
and novel conditional mouse models, will soon expand our insights on several areas of
research priority: first, the genetic and environmental modifiers of APOE-linked AD risk,
including the genetic modifiers and gene x environment interactions underlying the dramatic
differences in AD risk observed across ethnoracial groups; second, the dynamic complexity
of APOE 3D structure and its interaction with both lipid cargo and biological receptors,

as well as its role as chaperon of aggregation-prone proteins such as Ap; third, the

impact that APOE isoforms, mutations and post-translational modifications (for example,
glycosylation) have on APOE 3D structure and interactions; and finally, the cell-autonomous
and non-autonomous effects of each APOE isoform in each brain cell type before and after
widespread neuropathology. This knowledge could ultimately translate into much needed
effective therapies to prevent AD and/or slow down its clinical progression.
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Adeno-associated viral vectors

Small non-pathogenic viruses that can infect cells and deliver a small single-stranded DNA
cargo of <5 kb. This DNA is then transcribed and translated by the target cell generating the
protein of interest.

Antisense oligonucleotides

(ASOs). ASOs are short RNA transcripts that are synthesized to be complementary to the
sequence of a specific RNA target with the goals of preventing its translation into the protein
and promoting its degradation. ASOs are often chemically modified to increase stability
(resistance to degradation by RNAse enzymes) and enhance cellular uptake.

ATP-binding cassette (ABC) transporters such as ABCA1 and ABCG
Transmembrane proteins that transport cholesterol and phospholipids out of the cell to
lipid-poor apolipoproteins such as APOE.

Cell-autonomous and non-autonomous
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Cell-autonomous effects are those that a perturbed cell exerts on itself or other cells of the
same type. Cell-non-autonomous effects are those that a perturbed cell type (for example,
astrocytes) exerts on other cell types (for example, microglia), either directly or via its
secretome.

Exposome

Set of non-genetic risk factors that can impact the risk of developing certain disease (for
example, cancer or Alzheimer disease) of an individual, including cumulative lifetime
environ mental exposures and lifestyle habits.

Global genetic ancestry

Genetic variability across the genome that determines the race and ethnicity of an individual
based on the relative proportions of various population ancestries (for example, European,
African, Amerindian or East Asian), not always coincident with self-reported categories.

Human-inducible pluripotent stem cells

(hiPSCs). Cells derived from skin or blood cells after reprogramming them back to a
pluripotent embryonic-like state, which can be then differentiated to recapitulate any main
brain cell type, although often embryonic or fetal in nature. Isogenic versions that are
genetically identical except for the gene of interest (for example, APOE) can be generated
with CRISPR-Cas9 technology.

Local genetic ancestry

Genetic variability surrounding a specific locus in the genome of an individual, which can
include zero, one or two copies of an allele from each ancestral population, thereby affecting
the expression of a gene of interest (for example, APOE).

Polygenic risk score

(PRS). An estimate of the genetic relative risk of an individual to develop a certain
disease, calculated by applying the summary statistics from meta-analysis of genome-wide
association studies involving thousands of cases and controls to the genetic variants of that
particular individual.

Triggering receptor expressed on myeloid cells 2

(TREM2). A receptor expressed on the cell surface of immune cells, including microglia,
that activates phagocytosis in response to extracellular stress signals (for example, AB)
through the TYROBP-DAP12 signalling pathway.
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Box 1 |
Biomarker correlates of the APOE genotype
Alzheimer disease (AD)

. APOEeA carriers show higher PET amyloid-f (Ap) burden than non-carriers
across the normal ageing—AD dementia continuum?227-229,

. The APOEe? allele is protective against Ap plague deposition: cognitively
unimpaired APOEe2/e4 carriers have lower PET AR plague burden than
age-matched APOFEe3/e4 participants?29.230,

. APOEe4 and APOEe? carriers have a greater and lower PET tau
accumulation, respectively, than APOEe3 homozygotes after adjusting for
PET AP plaque burden, supporting a direct impact of the APOE genotype on
tau neurofibrillary tangle pathology?231-235,

. In cerebrospinal fluid (CSF), AB levels are lower in e4 carriers and higher in
&2 carriers; total tau or pTau levels are unaffected by the APOE genotype236.

Cerebral amyloid angiopathy (CAA)

. APOEe4 carriers are more likely to exhibit MRI biomarkers of CAA, such
as lobar cerebral microbleeds?37:238 and cortical superficial siderosis, than
APOEe3 homozygotes?3®,

. The APOEe? allele correlates with cortical superficial siderosis, possibly
owing to its vasculopathic effects®6:239,

. The APOEe4 allele is over-represented in people with CAA-related
inflammation, a rare entity in which autoimmune humoral and cellular
responses to AB-laden arterioles lead to brain oedema presenting with
encephalopathy, headaches and seizures?40:241,

Neurodegeneration

. Cognitively unimpaired APOEe4 carriers have lower cortical
glucose metabolism by 18F-fluoro-deoxy-glucose-PET242-246 and higher
neurofilament light-chain plasma levels24 than non-carriers, but these
associations are likely to be dependent on APOE genotype effects on Ap
plaque and tau burdens?47.

. Cognitively unimpaired APOEe2/e3 heterozygotes and APOEe?2
homozygotes have greater grey matter volume than APOEe3 homozygotes
in areas typically affected by AD neuropathology, suggesting resilience248,

. The CSF synaptic markers SNAP-25 (ref. 249) and neurogranin250 are
elevated in APOEe4 carriers with normal cognition and mild cognitive
impairment, respectively, compared with non-carriers, suggesting early
synaptic loss.
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. SNAP-25 was elevated even in amyloid PET-negative individuals?4, whereas
neurogranin was not significantly associated with the APOE genotype after
controlling for CSF AB and pTau levels20,

Neuroinflammation

. Translocator protein (TSPO) PET imaging shows more neuroinflammation in
APOEe4 carriers than non-carriers independently of PET global Ap plaque
and local tau burdens?51.

Reactive astrogliosis

. Neither plasma nor CSF glial fibrillary acidic protein levels differ according
to APOEe4 status when adjusting for PET AP plaque burden and clinical
status2>2,

. Plasma glial fibrillary acidic protein levels correlate with PET Ap plaque

burden independently of APOE genotype?®3.

. Myoinositol levels measured by MR spectroscopy as a proxy for astrocyte
function correlate with PET AP plaque and, to a lesser extent, tau burden only
in APOEe4 carriers, and partly mediate the effect of Ap on tau2®3,

Myelin integrity

. MRI in cognitively unimpaired individuals suggests that APOEe4 might
accelerate age-related loss of myelin brain content254:255,

Blood-brain barrier (BBB) damage

. Dynamic contrast-enhanced MRI shows BBB breakdown in cognitively
unimpaired and mildly impaired APOEe4 carriers relative to APOEe3
homozygotes, especially in the medial temporal lobe.

. Cognitively unimpaired and mildly impaired APOEe4 carriers have increased
CSF levels of platelet-derived growth factor receptor B, albumin quotient,
cyclophilin A and matrix metalloproteinase 9 (ref. 185), indicative of pericyte
degeneration and BBB permeability. However, larger studies have failed to
detect an independent association between APOE genotype and CSF/plasma
albumin quotient256:257 or CSF platelet-derived growth factor receptor-g
levels?>7 and instead have implicated diabetes?>6, dementia (regardless of
clinical type)2°6, age?57 or reactive astrogliosis?®’ in BBB damage.
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Box 2 |
Possible evolutionary benefits of APOEe4 in early life

The high frequency of APOEe4 in the general population contrasts with all its deleterious
consequences in late life. It has been proposed that APOEe4 is the ancestral variant and
that the APOFe3 and APOEe? alleles arose around 200,000-300,000 years ago2°8-260,
Given that genetic variants are preserved or extinguished by the pressure of natural
selection and APOEe4 is so deleterious later in life, researchers have asked what
evolutionary benefits might be associated with APOEe4 carriage earlier in life. In
evolutionary genetics, this concept is called antagonistic pleiotropy. Invoked advantages
of the APOEe4 allele include enhanced innate immunity to fight childhood enteric
infections?%1; improved fecundity and fertility2%2; reduced incidence and aggressiveness
of melanoma2%3 and other cancers; and even a cognitive edge over young adult APOEe3
homozygotes in some cognitive tasks, such as short-term memory for brief periods254,
visual search and attention control265-267  visual working memory2%8 and tasks requiring
high-demand cognitive control289, More evidence is needed to support this hypothesis
including large population-based birth cohort studies, ideally complemented with
electronic health records and with fluid and imaging biomarkers.
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Box 3 |
Mouse models to study APOE
APOE-targeted replacement mice

Endogenous mouse Apoe was replaced with human APOE with a mouse line for each
isoform. This model has been crossed with both Ap plague-depositing and tauopathy
models270-272,

APOE knock-in mice (MODEL-AD and JAX)

The mouse Apoe gene was humanized through homologous recombination to generate an
APOE4 knock-in line, whereas the other two APOE isoforms were generated by applying
CRISPR-Cas9 editing to this original APOE4 line2’3,

APOE knock-in floxed mice (CureAlz)

The mouse Apoe gene was replaced with one of the three human APOE alleles flanked
by loxP sites, which enable the conditional removal of APOE upon Cre recombinase
expression!8l, These mice have been crossed with constitutive and inducible mouse lines
expressing Cre in various cell types, namely, astrocytes and microglia, and the resulting
mice have been crossed with Ap plaque-depositing and tauopathy models. APOE3 and
APOE4 Christchurch mice have been generated by introducing the R136S mutation
within APOE3 or APOF4 using a CRISPR-Cas9 knock-in strategy197.198,

Apoe knockout mice

The endogenous mouse Apoe gene was inactivated by homologous recombination and
insertion of a neomycin cassette?’4. These mice have been crossed with AB plaque-
depositing and tauopathy models.

Mice with cell type-specific APOE expression

These mice express an APOE3 or APOEA minigene specifically in neurons under the
control of the neuron-specific enolase promotor, or in astrocytes under the glial fibrillary
acidic protein promotor275.276,

APOE-inducible mice

These mice express APOE3 or APOE4 exclusively in cells expressing Cre recombinase
upon treatment with oral doxycyclinel12. The inserted cassette also contains enhanced
green fluorescent protein. These mice have been crossed to various Cre lines as well as
AP plague-depositing mice.

APOE switch mice

These mice express APOE4 until their Cre recombinase excises APOE4, causing a switch
to expression of APOE2 (ref. 277). They have been crossed to diferent Cre lines as well
as AB plague-depositing mice.
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Key points

The risk of Alzheimer disease associated with the APOE genotype is
modulated by global and local genetic ancestries, other genetic risk loci and
the lifetime exposome of an individual.

APOE missense mutations are providing key insights into the
pathophysiology of the classic three APOE isoforms.

The APOE genotype might modulate the risk of other neurodegenerative
diseases by influencing the pathobiology of their culprit aggregation-prone
proteins.

The APOE isoforms affect a wide range of molecular and cellular functions
in multiple brain cell types via cell-autonomous and non-autonomous
mechanisms.

Several strategies to target APOE therapeutically have shown efficacy in
preclinical studies and hold promise for translation into clinical trials.
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Fig. 1 |. Schematic illustration of structural and functional regions of APOE.
a, The APOE gene is located on chromosome 19 at position q13.3 and is transcribed

into four exons218, b, Apolipoprotein E (APOE) is activated after the cleavage of an 18
amino acid secretion peptide and consists of an N-terminal domain comprising four bundled
a-helices and a helical C-terminal domain separated by a flexible hinge region?1?. The
N-terminal domain contains the receptor-binding region as well as the polymorphisms that
differentiate the common APOE isoforms. The C-terminal domain contains the lipid-binding
region and a self-associate region that required five mutations (each denoted with an

X) to allow the protein to be crystallized135. APOE isoforms are differentially O-linked
glycosylated and the main sites are indicated?20. ¢, The positions of residues that modify
Alzheimer disease risk in the three APOE haplotype common variants and in the rarer
missense mutations are indicated with red lines for deleterious mutations (text highlighted
in red) and green lines for protective mutations (text highlighted in green). HSPG, heparan
sulfate proteoglycan.
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Fig. 2 |. Multifaceted roles of APOE in Alzheimer disease pathophysiology.
Apolipoprotein E (APOE) is produced mainly by astrocytes in the healthy brain but

also by reactive microglia in the brains of people with Alzheimer disease%. a, APOE

is lipidated mainly by the lipid transporter ABCA1, which is located in the astrocyte
plasma membrane?21, b, APOE4 promotes the accumulation of lipid droplets in the
astrocyte cytoplasm, which is indicative of impaired astrocyte lipid transport and energy
metabolism222, ¢, APOE interacts with the amyloid-B (AB) peptide, with APOE4
promoting its oligomerization, fibrillization and seeding into AB plaques13115.192 gnd
increasing cerebral amyloid angiopathy (CAA)*8. d, APOE interacts with TREM2 in the
microglia plasma membrane and affects microglial responses to Ap and tau (for example,
microglial migration to the plaques) in an isoform-dependent manner150:154.223 ¢ ' APOE
is internalized by astrocytes, neurons and endothelial cells via LRP1-mediated endocytosis,
which has also been implicated in tau uptake by neurons224:225_f, Extracellular tau and
APOE might compete for binding to heparan sulfate proteoglycans (HSPGs) on the neuron
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surface, with potential implications for tau propagation99226_ g, Besides CAA, APOE4
promotes blood—brain barrier (BBB) disruption and both leakage of plasma proteins and
microbleeds!83185 E4, APOF4; E3, APOE3; E2, APOE2; EKO, APOE knockout; ‘2’
indicates phenomenon has either not been studied in APOE2 or reports are contradictory.
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Fig. 3 |. Therapeutic approaches targeting APOE.
Schematic illustrates the main therapeutic strategies targeting apolipoprotein E (APOE) that

have been tested in mouse models. a, Blocking APOE interactions using small molecule
mimetics of the amyloid p (Ap)-APOE binding domains193.194 b, Increasing APOE2
levels via adeno-associated viral (AAV) vector delivery of APOEZ (refs. 202,203). c,
Decreasing APOEA4 levels using anti-APOE antibodies d, Decreasing APOE4 levels using
antisense oligonucleotides (ASOs)2%6. e, Increasing APOE lipidation by upregulation of
ABCA1 with small molecule peptide mimetics?12. f, Using small molecules to correct
APOE4 conformation so that it resembles APOE2 (refs. 213,216). HSPG, heparan sulfate
proteoglycan.
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