

HHS Public Access

Author manuscript

Nat Rev Neurol. Author manuscript; available in PMC 2025 June 24.

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Published in final edited form as:

Nat Rev Neurol. 2024 August ; 20(8): 457–474. doi:10.1038/s41582-024-00988-2.

Multifaceted roles of APOE in Alzheimer disease

Rosemary J. Jackson^{1,2}, Bradley T. Hyman^{1,2,3,✉}, Alberto Serrano-Pozo^{1,2,3,✉}

¹Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.

²Harvard Medical School, Boston, MA, USA.

³Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.

Abstract

For the past three decades, apolipoprotein E (*APOE*) has been known as the single greatest genetic modulator of sporadic Alzheimer disease (AD) risk, influencing both the average age of onset and the lifetime risk of developing AD. The *APOE* ϵ 4 allele significantly increases AD risk, whereas the ϵ 2 allele is protective relative to the most common ϵ 3 allele. However, large differences in effect size exist across ethnoracial groups that are likely to depend on both global genetic ancestry and local genetic ancestry, as well as gene–environment interactions. Although early studies linked *APOE* to amyloid- β — one of the two culprit aggregation-prone proteins that define AD — in the past decade, mounting work has associated *APOE* with other neurodegenerative proteinopathies and broader ageing-related brain changes, such as neuroinflammation, energy metabolism failure, loss of myelin integrity and increased blood–brain barrier permeability, with potential implications for longevity and resilience to pathological protein aggregates. Novel mouse models and other technological advances have also enabled a number of therapeutic approaches aimed at either attenuating the *APOE* ϵ 4-linked increased AD risk or enhancing the *APOE* ϵ 2-linked AD protection. This Review summarizes this progress and highlights areas for future research towards the development of *APOE*-directed therapeutics.

Introduction

Since the identification of the amyloid- β (A β) peptide as one of the two culprit aggregation-prone proteins (together with tau) in 1984 (ref. 1), Alzheimer disease (AD) research has matured to the point that disease-modifying drugs that target A β are becoming available for clinical use^{2–4}. Similarly, since its discovery in 1993 (ref. 5), our understanding of the link between the apolipoprotein E (*APOE*) gene and AD risk has gained exciting momentum. Indeed, in the past decade in particular, we have witnessed unprecedented progress in the

[✉] bhyman@mgh.harvard.edu; aserrano1@mgh.harvard.edu.

Author contributions

R.J.J. and A.S.-P. reviewed the literature and wrote the manuscript draft. B.T.H. reviewed and edited the draft.

Competing interests

R.J.J. declares no competing interest. B.T.H. serves on the SAB of Latus and of Dewpoint and has a family member who is employed by Novartis. A.S.-P. has signed a material transfer agreement with Ionis Pharmaceuticals, Inc.

Additional information

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

areas of APOE-related genetic epidemiology, neuropathology, biomarkers, pathophysiology and therapeutics. Each of these advances has greatly broadened the scope of APOE research from its role in AD to those in AD-related dementias, from its interaction with A β to those with tau and other aggregation-prone proteins, and from a mere lipid transport function to complex cell-autonomous and non-autonomous effects involving virtually every brain cell type.

Although early studies linked APOE to A β , a mounting body of research has associated APOE with other neurodegenerative proteinopathies as well as with broader ageing-related brain changes, such as neuroinflammation, energy metabolism failure, myelin integrity and blood–brain barrier permeability. Furthermore, evidence has revealed potential implications for *APOE* in longevity and resilience to pathological protein aggregates. This new evidence has also expanded the repertoire of striking differences in behaviour across APOE isoforms, even though they differ in only two amino acid residues. Novel mouse models, gene delivery and silencing and other technological advances have also uncovered a number of approaches by which APOE could be therapeutically targeted.

In this Review, we will summarize the current perspectives on genetic, neuropathological, biomarker, pathophysiological and therapeutic aspects of APOE. First, we provide an update on *APOE* genetics, including the marked changes in *APOE*-linked AD risk driven by genetic ancestry, specific genetic modifiers and certain *APOE* mutations. Then, we cover the neuropathological, biomarker and clinical correlates of the *APOE* genotype and discuss the controversies around direct versus indirect effects of APOE on proteinopathies other than A β . Next, we detail the normal structure and function of APOE and the pathophysiological consequences of APOE isoforms with respect to aggregation-prone proteins (A β , tau, α -synuclein and TDP-43) and to the function of various brain cell types (astrocytes, microglia, neurons, oligodendrocytes and blood–brain barrier). Finally, we review the main therapeutic approaches tested in mouse models to date and posit that this body of knowledge is mature enough to be leveraged towards the development of disease-modifying drugs with the ultimate goal of preventing and/or slowing down AD progression.

Genetic basis of the APOE locus

The *APOE* gene maps to chromosome 19q33 (Fig. 1) and is part of a cluster of related genes with *APOC1*, *APOC4* and *APOC2*. The *APOE* variant linked with sporadic AD risk is a haplotype consisting of two single-nucleotide polymorphisms (SNPs), rs429358 (T/c, p.C112R) and rs7412 (C/t, p.R158C), which determine a single amino acid substitution — arginine (Arg) or cysteine (Cys) — in positions 112 and 158, resulting in three alleles: ϵ 2 (Cys112, Cys158), ϵ 3 (Cys112, Arg158) and ϵ 4 (Arg112, Arg158). *APOE* ϵ 3 is the most common allele in the general population, representing ~80% of alleles, and is used as reference^{5–7}. *APOE* ϵ 4 increases the risk of developing AD, and *APOE* ϵ 2 is protective against developing AD in a dose-dependent fashion, so that *APOE* ϵ 4 homozygotes have the highest risk and the rare *APOE* ϵ 2 homozygotes have the lowest^{5,7,8}. Traditionally, *APOE* ϵ 3/ ϵ 4 individuals and *APOE* ϵ 4 homozygotes were asserted to have ~2–3 and ~9–12 times higher risk of AD than *APOE* ϵ 3 homozygotes (reference group), respectively, and *APOE* ϵ 2/ ϵ 3 carriers were believed to have about half the risk of *APOE* ϵ 3 homozygotes^{5,7}.

However, the effect size of the *APOE* genotype on AD risk is now known to depend on a number of variables, including demographics such as race and ethnicity, age and sex, and whether the AD diagnosis is made on clinical or neuropathological⁸ grounds, or confirmed with biomarkers⁹.

Influence of genetic ancestry in *APOE* effects

The classic view of the dose-dependent *APOE*ε4-linked increase in AD risk and *APOE*ε2-linked protection against AD is currently being redefined owing to the application of modern genetic epidemiology methods to large populations of diverse ancestry. The initial intriguing observation that the *APOE*ε4 allele increases AD risk differentially across races and ethnicities, with the greatest increase in risk seen in East Asian people, followed by white, then Black, then Hispanic people⁶, has now been confirmed by a larger meta-analysis using not only self-reported race and ethnicity but also global genetic ancestry to ascertain the biological basis of these demographics¹⁰. In the analysis, *APOE* allele frequencies for East Asian, white, Black and Hispanic people were as follows: *APOE*ε2 carriers 5.6%, 11.1%, 19.7% and 10.6%; *APOE*ε3 homozygotes 72.8%, 50.6%, 43.3% and 61.3% and *APOE*ε4 carriers 21.6%, 40.6%, 41.6% and 29.9%, respectively¹⁰. Even more puzzling than these differences in *APOE*ε4-linked AD risk are those associated with the *APOE*ε2 allele; this study found that the protective effect of *APOE*ε2 is attenuated in Black versus white people, whereas in Hispanic and East Asian individuals, the *APOE*ε2 allele confers essentially no protection against AD relative to *APOE*ε3 homozygosity, and only in the presence of *APOE*ε4 does *APOE*ε2 confer protection in Hispanic people¹⁰ (Fig. 2).

Deciphering the substrate (substrates) of ethnicity and race-based differences in the odds of developing AD associated with the *APOE* genotype could provide new molecular targets for prevention and therapeutic development. Besides the effects of global genetic ancestry causing variability across the genome — for example, higher Amerindian and African American global ancestry might attenuate *APOE*ε4-linked increased AD risk^{10,11} — differences in local ancestry causing genetic variability around the *APOE* locus are a major focus of investigation^{12,13}. Interestingly, *APOE* mRNA expression levels seem to be higher in astrocytes from *APOE*ε4 homozygous individuals with European versus African local ancestry¹⁴; this observation could be owing to substantial differences in the frequency of certain SNPs that impact the regulation of the *APOE* gene expression¹⁵.

Influence of sex and age in *APOE* effects

The odds of AD associated with the *APOE* genotype are not uniform across age or sexes. Rather, age and sex moderate the effects of the *APOE* genotype on AD risk so that the risk associated with the *APOE*ε3/ε4 genotype is highest in women of ages 60–70 years (or 70–80 years according to ref. 6) but decreases in older women and equalizes to that of non-Hispanic White, Black and Hispanic men of the same age¹⁰. Notably, this age × sex interaction with the *APOE*ε3/ε4 genotype was not only seen in non-Hispanic White people but also replicated in Black and Hispanic individuals via meta-analysis of both groups, suggesting that the interaction is independent of race and ethnicity¹⁰. This finding has implications for genetic counselling and design of prevention clinical trials. As shown

subsequently, the biological basis of this interaction between *APOE* and both sex and age has begun to be unravelled but remains poorly understood.

Genetic modifiers of *APOE*e4-linked AD risk

Although *APOE*e4 homozygosity may approach 100% penetrance for A β deposition in the brain¹⁶, even for white or East Asian people, being homozygous for *APOE*e4 is not synonymous with developing AD dementia; the lifetime risk up to age 80–85 years for mild cognitive impairment or dementia owing to AD has been estimated as 30–55% for *APOE*e4 homozygotes, 20–25% for *APOE*e3/e4 carriers and 10–15% for *APOE*e3 homozygotes according to population-based studies with a majority of individuals of European ancestry^{17,18}. Large meta-analyses of genome-wide association studies (GWAS) have uncovered more than 80 other risk and protective loci^{19,20} that could potentially augment or attenuate the *APOE*-linked AD risk. This moderating effect has been elegantly shown by comparing the polygenic risk score (PRS) of a cohort of people homozygous for *APOE*e4 who either had early-onset (<65 years) AD or were still cognitively unimpaired at age >75 ('resilient'); the resilient cohort had a much lower PRS than the early-onset cohort²¹. Similarly, individuals with subjective cognitive decline and *APOE*e4 carriers were more likely to advance to AD dementia if they had a high PRS (calculated without *APOE*), whereas a low PRS attenuated the *APOE*e4 effect size²².

Several other SNPs not revealed by GWAS have been shown to attenuate the risk of AD associated with the *APOE*e4 allele. Of particular interest is the longevity-increasing *KLOTHO*-VS heterozygosity, which has been reported to operate by decreasing A β plaque deposition, tau accumulation and tau-mediated cognitive impairment^{23–26}. *CASP7* rs10553596 and *SERPINA3* rs4934-A/A have also been suggested to confer resilience against AD in people homozygous for *APOE*e4 aged >75 years²⁷.

Non-genetic modifiers of *APOE*e4-linked AD risk

Besides genetic modifiers, non-genetic acquired factors comprising the AD exposome — for example, education attainment, exercise, diet, cardiovascular risk factors, hearing loss and pollution^{28,29} — could also moderate the effect of *APOE* on AD risk and partly explain ethnoracial differences in effect size. Indeed, some studies have suggested an interaction between *APOE* genotype and several of these modifiable risk factors, whereby carrying the *APOE*e4 allele would multiply the increased AD risk associated with the risk factor alone (for example, cardiovascular risk factors³⁰) or counteract the reduced AD risk conferred by a protective factor, such as education attainment³¹ or physical exercise³². However, not all epidemiological studies have detected these interactions³³. By contrast, reported estimates of the population attributable fraction of dementia for these modifiable risk factors, meaning the percentage of dementia cases that could be prevented if each factor was eliminated from the population, are higher in Black and Hispanic people than in white and Asian people, which points to complex genome \times environment interactions^{34,35}. More epidemiological research is needed to confirm these *APOE* gene \times environment interactions, and more preclinical studies to dissect the underlying mechanisms.

***APOE* mutations**

Aside from the *APOE*ε2, ε3 and ε4 alleles, several other rare missense variants in the *APOE* gene have been reported to influence AD risk and age of symptom onset (Table 1 and Fig. 1).

R136C (Christchurch). The R136S (Christchurch) mutation has been reported to confer protection against AD on the basis of a unique individual carrying the *PSEN1* E280A mutation who was homozygous for the *APOE*ε3 allele with the R136S mutation³⁶. This woman had an expected age of symptom onset of 44 years but did not present with mild cognitive impairment until her 70s and exhibited lower than expected tau PET radiotracer uptake. In addition, the woman had relatively preserved precuneus metabolism shown by ¹⁸F-fluoro-deoxy-glucose (FDG)-PET, despite substantial Aβ PET radiotracer uptake and hippocampal atrophy, and at autopsy examination had an atypical distribution of neurofibrillary tangles, with greater density in the occipital cortex than in the frontal cortex and hippocampus³⁶, suggestive of the posterior cortical atrophy variant of AD.

*APOE*R136S is a very rare mutation (0.0004% allele frequency in the European population³⁷) that was originally described in *APOE*ε2 alleles of people with type III hyperlipoproteinaemia^{38,39}, but is much more common in *APOE*ε3 homozygotes than in any other genotype and has also been associated with increased plasma apolipoprotein B (APOB) levels³⁷. The protective effect of the *APOE*R136S mutation seems to require homozygosity, given that four individuals with *PSEN1*-E280A and heterozygous for *APOE*ε3^{R136S} developed mild cognitive impairment at the expected age of 45 years³⁶ and some *APOE*ε3^{R136S} heterozygous individuals with autopsy-proven AD had early onset of symptoms⁴⁰.

R145C. The R145C mutation has been reported only in the *APOE*ε3 allele in individuals with African ancestry and has been associated with both a ~2–3-fold higher risk of AD and an earlier age of symptom onset in those with the *APOE*ε3^{R145C}/ε4 genotype⁴¹.

V236E (Jacksonville). The V236E (Jacksonville) mutation has been described only in the *APOE*ε3 allele and reduces the risk of AD down to that of *APOE*ε2 carriers or even further^{42,43}. This mutation has been associated with a reduction in fibrillar Aβ plaque by amyloid PET and neuropathological examination⁴⁴.

Neuropathological correlates of *APOE* genotype in late life

What are the specific neuropathological correlates of the *APOE* genotype? The answer is not straightforward considering the prominent differences in AD risk across genetic ancestries and that most studies addressing this question have been conducted in samples with a majority of non-Hispanic white participants, thus limiting their generalizability to other ethnoracial groups. Although multimodal biofluid and imaging biomarker studies are offering a unique opportunity to study the neuropathological correlates of *APOE* longitudinally in living individuals (Box 1), genetic–neuropathological correlation studies remain insightful, particularly given the frequent finding of multiple potential neuropathological contributors to cognitive impairment, some of which lack

a useful biomarker such as TDP-43 pathology⁴⁵. Thus, next we review our current understanding of *APOE* neuropathological correlates with a special emphasis on non-AD neuropathologies, presenting either comorbid with AD neuropathological changes or as primary neuropathological diagnoses.

***APOE* and AD neuropathological changes**

Relative to the *APOE*ε3 homozygote reference group, carrying one or two *APOE*ε4 alleles is independently associated with a higher Aβ plaque burden and more severe cerebral amyloid angiopathy (CAA), whereas *APOE*ε2/ε2 and ε2/ε3 individuals have fewer Aβ plaques^{46–50} but are more likely to have CAA⁵¹. Of note, although CAA typically affects leptomeningeal and cortical medium- and small-sized arteries, a subtype of capillary CAA has been associated with *APOE*ε4 carriage^{51,52}. In contrast to Aβ pathology, the existence of a direct effect of *APOE* genotype on the severity of tau neurofibrillary tangle pathology remains controversial, with most studies agreeing that *APOE*ε4-linked effect on tangles is primarily indirect, mediated through its increase of Aβ plaque burden^{46–48,53}. By contrast, *APOE*ε2 has been found to have both direct and indirect (through Aβ) protective effects against tangle pathology^{48,49}.

The *APOE*ε2/ε4 genotype has been comparatively less studied owing to researchers either including this genotype within the *APOE*ε4⁺ group because of its low frequency or deliberately excluding it to avoid potential confounding of their results by a putative cancellation of the effects of these opposite alleles. However, relative to *APOE*ε3 homozygotes, *APOE*ε2/ε4 carriers have greater Aβ plaque burden⁵⁴, increased CAA severity⁵⁰ and increased odds of macroinfarcts⁵⁵, whereas differences in tangle burden are conflicting^{49,54}. Of note, *APOE*ε2/ε4 individuals have a particularly high risk of intracerebral lobar haemorrhage in the presence of CAA⁵⁰, possibly because the *APOE*ε2 allele has been associated with fibrinoid necrosis of the vessel wall^{56,57}. Overall, these data indicate that the *APOE*ε4 allele is functionally dominant over the *APOE*ε2 allele.

***APOE* and cerebrovascular diseases comorbid with AD**

AD is frequently accompanied by cerebrovascular disease^{45,58}. Compared with *APOE*ε3 homozygosity, *APOE*ε4 carriage has been independently associated with increased cerebrovascular burden in the form of gross (macro) infarcts in some studies⁵⁵, but not others⁵⁰, whereas *APOE*ε2 is associated with more severe ischaemic small vessel disease in the form of arteriolosclerosis, especially in individuals aged 90 years and older⁵⁵. Neither allele is associated with atherosclerosis in the circle of Willis or microinfarcts⁵⁵.

***APOE* and other neurodegenerative diseases comorbid with AD**

As with cerebrovascular disease, the co-occurrence of AD with other age-related neurodegenerative proteinopathies such as α-synuclein-containing Lewy bodies and neurites in the neocortex, amygdala and substantia nigra, and TDP-43-containing neuronal cytoplasmic inclusions and dystrophic neurites in the hippocampus and amygdala — the so-called limbic-predominant age-related TDP-43 encephalopathy neuropathological changes or LATE-NC — is not uncommon, and they cooperate to worsen cognition^{59–61}. Carriers of the *APOE*ε4 allele have increased odds of a multi-proteinopathy, whereas carrying the

*APOE*ε2 allele reduces these odds, relative to *APOE*ε3 homozygosity^{60,61}. Specifically, *APOE*ε4 carriage has been independently associated with increased odds and severity of Lewy body pathology^{49,62} and TDP-43 pathology^{59,63,64} and with the presence of TDP-43-related hippocampal sclerosis⁶³ in the scenario of a primary neuropathological diagnosis of AD.

***APOE* and primary neurodegenerative diagnoses other than AD**

Converse to the *APOE*ε4-associated increased likelihood of comorbid proteinopathies in people with AD, the *APOE*ε4 allele also correlates with the presence of AD neuropathological changes in people with a primary neuropathological diagnosis of amyotrophic lateral sclerosis, neocortical Lewy body disease (LBD), primary tauopathies including Pick's disease, progressive supranuclear palsy (PSP) and corticobasal degeneration and multiple system atrophy⁶⁵. However, the association between the *APOE* genotype and 'pure' non-AD primary neuropathological diagnoses in which AD neuropathology is absent or minimal is highly controversial, as discussed subsequently.

Tauopathies. One study found that the *APOE*ε2 allele is associated with increased odds of neuropathologically confirmed primary tauopathy (PSP and corticobasal degeneration)⁶⁶. However, another study failed to find such association⁶⁷ and in a third study the significance of the association was lost when adjusting for AD neuropathological changes⁴⁹, suggesting a spurious association owing to the strength of the *APOE*ε4–AD link. The first study⁶⁶ also found increased numbers of tau inclusions, including oligodendroglial coiled bodies, tufted astrocytes and neuropil threads, and an up-trend for neurofibrillary tangles in *APOE*ε2 carriers with autopsy-proven PSP. Of note, *APOE*ε4 has been associated with greater severity of chronic traumatic encephalopathy⁶⁸.

α-Synucleinopathies. *APOE*ε4 has been associated with a faster rate of cognitive decline in people with Parkinson disease, independent of AD neuropathology assessed by levels of CSF biomarkers Aβ42 and pTau⁶⁹. Furthermore, the ε4 allele has been associated with increased risk of a dementia presentation in people with pure α-synucleinopathies⁷⁰. *APOE*ε4 has also been associated with the burden of α-synuclein inclusions in LBD with minimal AD co-pathology^{62,71}, although other studies have only found an association between *APOE*ε4 and LBD in the presence of AD neuropathology, but not in pure LBD^{72,73}. By contrast, no association has been found between the *APOE* genotype and a primary neuropathological diagnosis of multiple system atrophy^{67,74}.

TDP-43 proteinopathies. An association between the *APOE*ε2 allele and higher levels of TDP-43-positive dystrophic neurites (but not neuronal cytoplasmic inclusions) in the motor cortex of individuals with amyotrophic lateral sclerosis and frontotemporal lobar degeneration-TDP has been reported⁷⁵.

Other correlates of *APOE* genotype in late life

Cognitive correlates

The well-established association between *APOE* genotype and cognition — whereby *APOE* ϵ 4 accelerates age-related cognitive decline⁷⁶ and *APOE* ϵ 2 delays it⁷⁷ — is largely mediated by genotype-specific effects on AD neuropathological changes and, to a lesser extent, on comorbid pathologies^{46–48,78,79}. However, after controlling for the presence and severity of AD neuropathology and comorbid pathologies, carrying the *APOE* ϵ 4 allele might still accelerate the rate of cognitive decline in the normal ageing-sporadic AD continuum, whereas carrying the *APOE* ϵ 2 allele might slow down cognitive decline^{47,77,80,81}. This observation suggests that *APOE* drives differential neurotoxic effects or neural network vulnerability that is independent of neuropathology severity. Remarkably, *APOE* ϵ 4 can accelerate age-related cognitive decline even in genetically determined AD, such as familial autosomal dominant AD³¹ and Down syndrome⁸², whereas *APOE* ϵ 2 can delay age of onset even in familial autosomal dominant AD⁸³.

Cardiovascular risk

APOE genetic variants are known to affect serum cholesterol levels and cardiovascular risk. Indeed, several GWAS have linked the rs4420638 and rs10402271 SNPs of the *APOE*–*APOC* cluster with higher serum LDL cholesterol levels and an increased risk of coronary artery disease^{84,85}. By contrast, *APOE* ϵ 2 has been associated with reduced risk of coronary and carotid artery diseases in diverse populations⁸⁶. In large health registries such as the UK BioBank, the *APOE* ϵ 4 allele has been associated with higher LDL cholesterol and triglycerides levels, lower HDL cholesterol levels and an increased risk of coronary artery disease. By contrast, in the same registries, *APOE* ϵ 2 has been associated with lower LDL cholesterol levels, increased triglyceride levels and increased risk of peripheral vascular disease^{87,88}. The rare *APOE* ϵ 2 homozygotes are at increased risk of developing hyperlipoproteinaemia type III (also known as familial dysbetalipoproteinaemia), characterized by very high triglyceride levels⁸⁹. These observations reflect the differential effects of *APOE* isoforms in lipid metabolism, which will be discussed further in the section ‘Current perspective on *APOE* pathophysiology’.

Impact on survival versus mortality

Several studies of large populations of individuals from European ancestry have raised the possibility that *APOE* is a longevity gene, with the *APOE* ϵ 2 variant associated with longer survival and the *APOE* ϵ 4 with shorter survival in a dose-dependent manner^{90–94}. Of note, contrary to expectation, these associations seem to be independent of baseline serum LDL cholesterol⁹³, cardiovascular risk^{93,94} and even AD diagnosis or the burden of AD neuropathology⁹⁴. Together, these observations argue against underlying competing risks and suggest that as-yet-unknown mechanisms mediate the impact of *APOE* on survival. Conversely, the *APOE* ϵ 4 allele has been proposed to hold evolutionary health benefits earlier in life that might explain its high frequency in the general population (Box 2).

Current perspective on APOE pathophysiology

What is APOE?

APOE is a protein canonically secreted to the extracellular space where it functions as a lipid transporter⁹⁵. In the CNS, APOE is produced predominantly by astrocytes, although it can also be produced by reactive microglia and, to a lesser extent, stressed neurons and other glial cells^{96,97}. Lipids are loaded onto APOE via transmembrane ATP-binding cassette (ABC) transporters such as ABCA1 and ABCG1 (ref. 98) (Fig. 2a). The structure of APOE changes markedly upon its binding to lipids to form lipoprotein particles, and the different APOE isoforms are predicted to undergo this change in structure at different rates, which partly influences their affinity for lipoprotein particles of different sizes^{99,100}.

Cryo-electron microscopy of APOE lipoprotein particles secreted from astrocytes in culture has revealed that APOE forms an anti-parallel dimer that wraps a discoidal lipoparticle in a ‘double-belt’ configuration¹⁰¹. APOE3 has a higher affinity for HDL, whereas APOE4 is more likely to bind LDL and VLDL¹⁰². This difference affects the amount and type of lipids that APOE can deliver within the brain but also changes the affinity of APOE for its various receptors (reviewed elsewhere¹⁰³). Receptor binding is likely to be a key mechanism by which APOE isoforms regulate AD risk, as modulation of these receptors has been shown to affect AD neuropathology^{104–108}; however, greater understanding of how this effect occurs is needed.

APOE protein interactions

Amyloid- β . The link between APOE4 and A β has been studied extensively for the past three decades, and the interaction between the two proteins has now been established as one of the mechanisms by which the *APOE*e4 allele increases AD risk¹⁰⁹. APOE4 is associated with increased A β deposition, and the mechanism behind this is multifaceted. Before the seminal genetic studies identifying *APOE*e4 as a risk factor for AD⁵ and *APOE*e2 as protective⁷, APOE was found to co-deposit with both cerebral and systemic amyloid deposits. Thus, APOE was proposed to be acting as a molecular chaperon to promote the seeding and misfolding kinetics of A β ¹¹⁰—a hypothesis that has been supported by more recent work¹¹¹. Indeed, APOE affects the seeding and aggregation of A β in an isoform-dependent manner¹¹², and the increased propensity of A β to oligomerize in the presence of APOE4 is considered a major mechanism by which APOE4 increases AD risk^{113–116} (Fig. 2c). In several different A β plaque-depositing mice that are genetically engineered to express the human APOE isoforms instead of mouse APOE (Box 3), APOE4 induces greater A β fibrillization and deposition in compact plaques relative to APOE3, whereas APOE2 markedly delays the onset and decreases the extent of A β plaque deposition^{117–120}. Moreover, in these mouse models, APOE4 has also been shown to impair A β clearance relative to APOE3, with APOE4–A β complexes exhibiting a lower binding affinity for APOE receptors, which results in a slower receptor-mediated clearance and a longer half-life of A β in *APOE*4 mice¹¹⁷ (Fig. 2e).

Besides promoting A β aggregation and impairing its clearance, APOE isoforms can also differentially influence the transcription of A β precursor protein and the generation of

$\text{A}\beta$; these factors are most increased by APOE4, followed by APOE3, then APOE2 (ref. 121). *Apoe* knockout plaque-depositing mice highlight the complexity of the APOE– $\text{A}\beta$ interaction, as these mice still exhibit deposition of $\text{A}\beta$ plaques, but the plaques are less compact and do not cause the synaptic and cognitive deficits typical of plaque-depositing mice with *Apoe* intact^{117,119,122}. These preclinical data, together with a case study of an *APOE* null individual with hyperlipoproteinemia type III but normal cognition and AD biomarkers¹²³, indicate that lowering APOE expression levels is a valid therapeutic strategy. However, antisense oligonucleotide therapy in mice suggests that lowering APOE levels is less effective after plaque deposition than before plaque deposition¹²⁴, which reinforces the idea that $\text{A}\beta$ plaque deposition is a multistep process.

Tau. Although for many years the effects of APOE on tau were assumed to be mediated through $\text{A}\beta$, animal and cell models of tauopathies have revealed that APOE4 is associated with a greater burden of misfolded and hyperphosphorylated tau and more severe tau-induced neurodegeneration, both in the presence and in the absence of $\text{A}\beta$ ^{125,126}. Specifically, in a tauopathy mouse model (PS19, overexpressing the *MAPT*P301S mutation) crossed with *APOE*-targeted replacement mice (Box 3), APOE had a marked isoform-dependent effect on tau pathology in the absence of $\text{A}\beta$ plaques, with *APOE4*/PS19 mice showing the greatest extent of tau neurofibrillary tangle pathology and neuronal loss and *APOE2*/PS19 mice the lowest¹²⁷ (Fig. 2f). Although the different APOE isoforms did differ in their propensity to induce pTau and tau aggregation, of greater importance was the much higher level of tau-induced neurodegeneration in the *APOE4*/PS19 mice. Importantly, *Apoe* knockout/PS19 mice were relatively spared from any neuronal and hippocampal volume loss when compared with any of the APOE-expressing mice, despite similar levels of tau accumulation compared with *APOE3*/PS19 mice¹²⁷. These results bear a striking resemblance to those from the $\text{A}\beta$ plaque-depositing mice^{120,128} and indicate that the effect of APOE4 in AD is due not only to the increased propensity of proteins to aggregate in the presence of APOE4, but also to the way APOE4 modulates the brain response to those aggregates once formed. This observation is crucial for therapeutic development as it suggests that targeting APOE holds therapeutic potential despite high aggregate burden, thus after symptom onset in AD. Indeed, mounting evidence shows that APOE downstream effects converge on the microglial response to protein aggregates, as further discussed subsequently^{129,130}.

α -Synuclein. The strong association between APOE4 and $\text{A}\beta$ has overshadowed possible links between APOE and other aggregation-prone proteins. Studies using *APOE*-targeted replacement (*APOE*-TR) mice crossed with mutant α -synuclein (α syn) mice have reported that *APOE4* mice have increased aggregation of α syn, whereas *APOE2* mice have very limited α syn aggregates. Furthermore, the *APOE2* mice have improved motor function and prolonged survival compared with *APOE3*-expressing mice, suggesting that the effect of APOE on α -synucleinopathies is independent of its effect on $\text{A}\beta$ ⁶⁹. Biochemical studies indicate that APOE4 increases the seeding potential of α syn^{131,132}, and further mouse studies have shown that APOE4 alters the proteolytic processing of α syn. Together, these results highlight again the multifaceted effects of APOE4 on protein aggregation¹³³. More studies are required to understand the role of APOE in pure α -synucleinopathies.

TDP-43. As APOE has been shown to exert effects on TDP-43 pathology in post-mortem brains, mouse models might hold the key to understanding the impact of APOE isoforms in this proteinopathy. A study using adeno-associated viral (AAV) vectors to overexpress TDP-43 in the brains of *APOE*-TR mice of all three isoforms and in *Apoe* knockout mice revealed that, surprisingly, *APOE2*-targeted replacement TDP43-overexpressing mice have greater reactive gliosis, neurodegeneration and motor impairments⁷⁵, compared with *APOE3*-TR, *APOE4*-TR and *Apoe* knockout mice, which had very mild or no phenotypic alterations. Although this study showed that APOE isoforms can differentially affect TDP-43 pathology in the absence of A β , further work is needed to uncover the underlying mechanisms).

Propensity of APOE for aggregation

The differential effect of APOE isoforms on multiple proteins that are prone to pathological misfolding and aggregation in β -pleated sheet-rich fibrils in the brain raises the intriguing possibility that APOE acts as a chaperone of aggregation-prone proteins, with APOE4 having the greatest propensity to facilitate misfolding. Much work has gone into uncovering the mechanisms by which APOE4 might increase the likelihood of pathological misfolding and deposition of aggregation-prone proteins; however, APOE itself has also been shown to form aggregates, particularly in its non-lipidated state^{99,134,135} (Fig. 2). Whether these multimers of APOE have a biological function remains to be clarified, but the propensity of APOE, particularly APOE4, to form dimers, tetramers and higher order oligomers in solution has complicated attempts to get an accurate picture of the structure of the protein^{99,135}.

Intriguingly, the protective *APOE* Jacksonville mutation (Fig. 1) has been found to reduce APOE oligomerization and A β deposition, which could point to APOE oligomerization being biologically detrimental and adds weight to the hypothesis that APOE oligomerization might facilitate A β oligomerization⁴⁴. Along this line, an antibody against non-lipidated APOE, which is the version most likely to oligomerize, has shown promise in multiple AD mouse models^{136–139}. Computational and biochemical work from the past few years has begun to elucidate the molecular underpinnings of APOE multimerization, but greater understanding of how mutations in APOE affect its structure and both receptor- and lipid-binding properties would propel the discovery of APOE-targeted therapeutics aiming to prevent or slow down AD progression^{134,140,141}.

Cell type-specific effects of APOE

Astrocytes. Astrocytes provide the vast majority of the cholesterol required by mature neurons, and the APOE they produce is crucial for efficient cholesterol transport¹⁴². Astrocytes derived from *APOE4* human-inducible pluripotent stem cells (hiPSCs) are less efficient at secreting lipidated APOE particles and exhibit impaired cholesterol metabolism relative to *APOE3* hiPSC-derived astrocytes^{143,144}. This impairment is likely to be detrimental first to astrocytes and, secondarily, to neurons and could ‘prime’ the brain for neurodegeneration¹⁴⁵. *APOE4* astrocytes have an increased number of lipid droplets and impaired glucose utilization and mitochondrial function, lending further support to this hypothesis^{143,146,147} (Fig. 2b).

Given that astrocytes are the primary producers of APOE in the brain, the cell-autonomous and non-autonomous effects downstream of astrocytic APOE production have received considerable attention. To study such effects, novel mouse models have been developed that enable the removal of the *APOE4* or *APOE3* genes selectively from the astrocytes of *APOE* knock-in mice (see ‘CureAlz’ *APOE* mice, Box 3). These studies have revealed that removal of both astrocytic *APOE3* and *APOE4* is protective against A β deposition in plaque-depositing mice; specifically, plaque burden was lowered to the levels of *Apoe* knockout mice¹⁴⁸. However, only astrocytic *APOE4* deletion, but not *APOE3* deletion, significantly ameliorated tau neurofibrillary tangle burden in tauopathy mice¹⁴⁹. Interestingly, these studies found that removal of astrocytic APOE reduced microglial reaction to A β plaques and neurofibrillary tangles, but that astrocyte response to plaques and tangles was largely unchanged^{148,149}, suggesting ‘paracrine’ effects of astrocytic APOE on microglia and supporting the idea that APOE is essential in astrocyte–microglia crosstalk.

Microglia. Although APOE is predominantly produced by astrocytes in the healthy brain, its expression is markedly upregulated by reactive microglia in the brains of individuals with AD^{96,150}. This upregulation is a key element of a conserved transcriptional signature of reactive microglia that has been found in multiple neurodegenerative diseases^{150,151}. Together with triggering receptor expressed on myeloid cells 2 (TREM2), APOE has also been shown to regulate microglial response to A β plaques and neurofibrillary tangles in AD as well as in other neurodegenerative diseases¹⁵⁰. This so-called disease-associated microglial (DAM) response is differentially regulated by the various APOE isoforms, probably through their differential binding to specific surface microglial receptors such as TREM2 (refs. 152,153) (Fig. 2d). Reactive microglia migrate towards A β plaques, surround them and upregulate APOE, which binds to TREM2 and promotes plaque compaction¹⁵⁴. This process is likely to explain why both *Apoe* knockout and *Trem2* knockout plaque-depositing mice exhibit reduced microglial reactivity against A β plaques and their plaques are less compact^{117,119,122,155}. Importantly, this *APOE–TREM2* axis has also been found in transcriptomic post-mortem analyses of human brains, with *APOE4* carriers exhibiting a more prominent pro-inflammatory and phagocytic microglial transcriptomic signature^{152,153}. Moreover, evidence shows that this microglia-derived APOE has distinct post-translational modifications when compared with APOE produced by astrocytes and this, too, is isoform-dependent¹⁵⁶.

Although this body of evidence has led many to propose that microglia-derived APOE upregulates the DAM response in a cell-autonomous manner, new studies draw a more complex picture. In contrast to complete *Apoe* knockout mice, microglia-specific *Apoe* knockout A β plaque-depositing mice (Box 3) exhibit largely unchanged microglial and A β phenotypes except for slightly larger plaques¹⁵⁷. By contrast, removing *APOE4* specifically from microglia of *APOE4/PS19* tauopathy mice rescued a neuroprotective microglial signature^{157,158}. Additionally, as mentioned earlier, the characterization of microglia in astrocyte-specific *Apoe* knockout mice certainly indicates that microglia are affected by astrocytic APOE^{148,149}. Furthermore, *APOE4* microglia-like hiPSCs show decreased phagocytosis and increased inflammatory genes relative to *APOE3* microglia¹⁴³. In summary, data from the past 5 years on novel mouse models support a complex interplay

among microglia, astrocytes and AD neuropathology, but more research is needed to fully understand this complexity.

Neurons. Similar to microglia, neurons produce APOE in times of stress, albeit to a lesser extent⁹⁶. The characterization of hIPSC-derived neurons indicates that neuronal APOE4 is associated with altered synaptic function, fatty acid accumulation and hyperexcitability¹⁴³. Mouse models expressing *APOE3* or *APOE4* exclusively in either astrocytes or neurons (Box 3) show that APOE3 from both cell types can protect against neuronal hyperexcitability, whereas neuron-derived (but not astrocyte-derived) APOE4 is detrimental^{159,160}. A separate study has shown that removing APOE4 from neurons in a tauopathy mouse model leads to a significant reduction in tau neurofibrillary tangle pathology and tau-induced neurodegeneration¹⁶¹. This work highlights the important role of neuron-derived APOE and underscores the need for a deeper understanding of the ways in which APOE differs on the basis of the source cell type.

Oligodendrocytes. Post-mortem analysis of brain tissue has shown an association between the *APOEe4* allele and a reduced number of oligodendrocytes in the frontal cortex after controlling for the severity of AD neuropathology¹⁶². Moreover, studies performed in post-mortem brain tissue and *in vivo* using *APOE* knock-in mouse models have all associated *APOE4* with impaired myelination of oligodendrocytes resulting from altered cholesterol transport^{163,164}. These studies indicate that cholesterol transport is impaired both within oligodendrocytes¹⁶³ and from astrocytes to oligodendrocytes¹⁶⁴. Interestingly, *Apoe* knockout mice and LDL receptor (*Ldlr*)-overexpressing mice — which display low levels of APOE owing to internalization and clearance of APOE lipoproteins — have larger pools of oligodendrocyte progenitor cells and increased myelin coverage of axons, supporting the idea that APOE regulates oligodendrocyte number and function¹⁰⁶.

APOE and cellular metabolism

The brain, and particularly its neurons, are energetically very demanding, and the regulation of both cellular lipid content and mitochondrial function is essential for brain health. *In vitro* studies have shown that fragments of APOE, which are more abundant with APOE4 than with APOE3, can cause neuronal mitochondrial dysfunction^{165,166}. Further, *in vitro* studies have indicated that this mitochondrial dysfunction partly results from a blockade of mitophagy owing to APOE4-mediated lysosomal dysfunction, which leads to an accumulation of damaged and dysfunctional mitochondrial in APOE4 carriers^{167–169}. In addition, in both a mouse model and human postmortem brains, *APOEe4* is linked to altered expression of proteins involved in mitochondrial fission and fusion, suggesting that an alteration in mitochondrial dynamics might lead to or arise from impaired mitochondrial function^{147,170}.

Mitochondria have a key role in buffering and storage of calcium ions, which is crucial for the correct functioning of neurons^{171,172}. Impaired calcium flux has been observed *in vitro* in an APOE4-expressing neuronal cell line compared with an APOE3-expressing line and could be partially responsible for the hyperexcitability seen in *APOE4* neurons in culture¹⁷³.

APOE4-TR mice exhibit multiple alterations of energy metabolism compared with *APOE3*-TR mice, including impaired mitochondrial respiration in the cortex and hippocampus, upregulation of oxidative phosphorylation genes in the entorhinal cortex and differential levels of fatty acids and other metabolites¹⁷⁴. In particular, *APOE4* astrocytes and microglia have increased glycolytic activity when compared with the same cells expressing *APOE3* (refs. 175,176). Neurons shuttle fatty acids to glial cells via APOE, with APOE4 being less efficient than APOE3 at this transport¹⁷⁷. Glial cells then store excess free fatty acids in the form of triglycerides and cholesterol esters in intracellular lipid droplets, which serve as an energy storage until they are catabolized in mitochondria via β -oxidation, and this process is compromised in the presence of APOE4 (refs. 146,177) (Fig. 2b). Work both *in vitro* and *in vivo* has highlighted an APOE isoform-specific impact on lipid droplet accumulation in astrocytes¹⁴⁶, neurons¹⁷⁷ and microglia¹⁷⁸. Notably, in 1907, Alois Alzheimer described an accumulation of lipid droplets in astrocytes around senile plaques¹⁷⁹.

Intriguingly, not only has APOE been shown to affect mitochondrial structure and function, but also mitochondrial dysfunction has been shown to impact APOE gene and protein expression and secretion¹⁸⁰.

APOE and the brain vasculature

APOE circulating in the blood is predominantly produced by the liver; however, the BBB keeps this pool of peripheral APOE separated from that produced in the CNS^{181,182}. Nevertheless, peripheral APOE seems to influence the brain partly by impacting the BBB. When compared with wild-type mice, both *Apoe* knockout mice and mice expressing *APOE4* have a leaky BBB, a phenomenon also reported in cognitively unimpaired and mildly impaired individuals who carry an *APOEe4* allele^{183–185}. These observations have led to the hypothesis that *APOE4* constitutes a loss-of-function APOE variant with respect to BBB maintenance. Indeed, when *APOE4* was knocked out from astrocytes, the BBB was able to repair itself, indicating that APOE4 produced by astrocytes is responsible for this BBB leakage¹⁸⁴. A leaky BBB increases plasma proteins in the brain parenchyma, thereby leading to oxidative stress and neuroinflammation, and is yet another mechanism by which APOE could prime the brain for neurodegeneration¹⁴⁵. Intriguingly, removal of APOE4 specifically from astrocytes of *APOE4* knock-in plaque-depositing mice leads to increased CAA but also increased BBB integrity, indicating that APOE4 itself could be more deleterious for BBB integrity than the vascular A β build-up¹⁸⁶ (Fig. 2g).

Besides BBB integrity, APOE4 has a negative impact on cerebral blood flow and neurovascular coupling; *APOE4* mice show reduced cerebral blood flow both at baseline and in stimulus-evoked paradigms, relative to *APOE3* mice^{187–189}. Moreover, APOE4 also reduces the density of blood vessels in these mice, thereby potentially impairing oxygen availability to neurons¹⁸⁸. Importantly, the development of anti-A β immunotherapies has encountered a major roadblock precisely in the propensity of *APOEe4* carriers to BBB leakage: although the FDA-approved anti-A β monoclonal antibodies are very effective at removing A β from the brain parenchyma, a substantial proportion of treated individuals, especially *APOEe4* carriers, exhibit amyloid-related imaging abnormalities (ARIA) consisting of oedema (ARIA-E) and haemosiderin deposits (ARIA-H)². The risk

of developing these potentially serious adverse effects is higher in *APOE* ϵ 4 carriers, particularly homozygotes, and current recommendations are that patients are genotyped for *APOE* before starting these therapies to offer a balanced benefit–risk discussion¹⁹⁰.

APOE-targeted therapeutics

Given the high *APOE* ϵ 4 allele frequency and large effect size with respect to AD risk (at least in populations of European and East Asian ancestry), as well as all its deleterious consequences on brain homeostasis listed earlier, in 2024 a consensus panel¹⁹¹ concluded that lowering *APOE*4 levels is a reasonable approach to prevent or slow down AD progression. This and other therapeutic strategies targeting *APOE* that have been explored to date are summarized next.

Blocking APOE interactions

*APOE*4 is associated with increased oligomerization and deposition of A β in vitro and in vivo^{113,115,192}, so blocking the interaction between A β and *APOE* is a promising strategy to mitigate the facilitation of A β seeding and aggregation by *APOE*4. In mouse models, this has been achieved using a small molecule mimetic homologous to the domain of A β that interacts with *APOE* but is modified to be more protease-resistant. This small peptide can reduce the oligomerization of A β in vitro and ameliorate A β and tau pathology in a triple transgenic mouse model of AD^{193,194} (Fig. 3a). On the inverse of A β mimetics are *APOE* mimetics, in particular, small peptides homologous to the receptor-binding region of *APOE*. Such *APOE* mimetics have been shown to prevent microglial reaction in vitro, as well as A β deposition and associated memory deficits in *APOE*4 plaque-depositing mice^{195,196}. These preclinical findings indicate that mimetic peptides designed to prevent *APOE* binding to either A β or *APOE* receptors could be therapeutically viable.

Initial in vitro functional experiments with the *APOE* Christchurch protective mutation (see the section ‘R136C (Christchurch)’) suggest that this mutation weakens the interaction between *APOE* and heparan sulfate proteoglycans — located on the surface of neurons and implicated in tau uptake — and, therefore, that blocking *APOE*–heparan sulfate proteoglycan binding might have therapeutic value³⁶ (Fig. 3a). This prediction was confirmed in vivo in 2023 by two studies that used mouse models expressing human *APOE*3 or *APOE*4 with the Christchurch mutation, which showed amelioration of AD phenotypes when compared with *APOE*3 or *APOE*4 mice, particularly those related to tau accumulation and microglial response^{197,198}. Moreover, an *APOE* Christchurch-mimetic antibody that disrupts *APOE*–heparin binding has shown promise in reducing tau hyperphosphorylation in mouse models of tauopathy¹⁹⁹.

Increasing *APOE*2 levels

Gene therapy has already been efficacious in other neurodegenerative diseases, most notably spinal muscular atrophy^{200,201}. Multiple laboratories are pursuing the development of gene therapy approaches to express *APOE*2 in an *APOE*4 background. The introduction of human *APOE*2 into plaque-depositing mice expressing endogenous mouse *Apoe* via AAV-mediated delivery was shown to prevent and even reverse the deposition of A β into plaques, whereas

delivery of *APOE4* had the opposite effect¹²⁸ (Fig. 3b). Furthermore, in mice, administration of *APOE2* was found to be beneficial at reducing plaque deposition even in the presence of *APOE4*, indicating that *APOE2* can reduce some of the negative effects of *APOE4* (refs. 202,203). Remarkably, the first human trial using AAV to express *APOE2* in *APOE4* homozygotes has been initiated, and the reported safety results from this phase I trial are promising despite the small number of participants²⁰⁴ ([NCT03634007](#)).

Decreasing *APOE4* levels

Immunotherapy using anti-*APOE* antibodies is another way of lowering *APOE4* levels in the brain. An antibody that preferentially binds to non-lipidated *APOE4* has shown promise in reducing $\text{A}\beta$ plaques and CAA in a mouse model of β -amyloidosis, as well as decreasing $\text{A}\beta$ -driven tau seeding in mice^{137–139}. Targeting of the non-lipidated version of *APOE4* is predicted to be more successful than targeting the lipidated version, as non-lipidated *APOE* is more likely to co-deposit with $\text{A}\beta$ plaques and also to self-associate¹³⁹ (Fig. 3c). However, as with most immunotherapies, stimulating microglia via their Fc domain could potentially have undesired detrimental effects on the brain^{139,205}.

Another mechanism of decreasing *APOE4* expression is using antisense oligonucleotides against *APOE4* (Fig. 3d). This method has been effective in mouse models of both $\text{A}\beta$ plaque deposition and tauopathy, although the timing of administration seems to be crucial for success^{124,206}. For example, starting before $\text{A}\beta$ plaque deposition prevented $\text{A}\beta$ plaque development, whereas animals treated after the onset of plaque deposition actually showed an increase in $\text{A}\beta$ plaque size and plaque-associated dystrophic neurites. These results indicate that clinical trials with these therapeutics should be carefully designed¹²⁴.

Increasing *APOE* lipidation

Aside from the aforementioned immunotherapy against specifically non-lipidated *APOE*, efforts are also being made to increase the extent of *APOE* lipidation without directly affecting *APOE* levels. Liver X receptors and retinoid X receptors are known to increase *APOE* lipidation^{207,208}. Bexarotene is an FDA-approved liver X receptor/retinoid X receptor agonist for use in refractory cutaneous T cell lymphoma and has been shown to enhance $\text{A}\beta$ clearance and improve cognitive performance in plaque-depositing mouse models²⁰⁹. However, in phase Ib and II trials, bexarotene increased cerebrospinal fluid *APOE* by only 25% and failed to reduce PET $\text{A}\beta$ burden or alter brain $\text{A}\beta$ metabolism, probably owing to poor BBB penetration, although it caused hyperlipidaemia in most participants^{210,211}. More recently, peptide mimetics used to upregulate ABCA1 were shown to increase *APOE4* lipidation and reduce $\text{A}\beta$ deposition and cognitive deficits in *APOE4* knock-in (but not *APOE3* knock-in) plaque-depositing mice, indicating that directly targeting *APOE* lipidation is an effective therapeutic approach²¹² (Fig. 3e).

Correcting *APOE4* conformation

The single amino acid changes in the different *APOE* isoforms result in slightly different structures, which have a strikingly large effect on the binding affinities of *APOE* to lipids, $\text{A}\beta$ and receptors^{99,111,116,140}. Multiple small molecules have been designed to ‘correct’ the conformation of *APOE4* so that it resembles that of *APOE3* or *APOE2* (refs. 213–217) (Fig.

3f). Some of these molecules have been shown to be effective in cell models, whereas others are in even earlier stages of development^{216,217}.

Concluding remarks and future directions

APOE continues to be the strongest contributor to AD heritability, despite the discovery of more than 80 risk loci in large GWAS over the past few years²⁰. In the past three decades, the field has seen tremendous progress in the understanding of the role of *APOE* in AD and other neurodegenerative diseases. Technological advances, including bioinformatics approaches applied to big data such as massive electronic health records and multi-omics datasets, cutting-edge structural protein biology methods such as cryo-electron microscopy and novel conditional mouse models, will soon expand our insights on several areas of research priority: first, the genetic and environmental modifiers of *APOE*-linked AD risk, including the genetic modifiers and gene \times environment interactions underlying the dramatic differences in AD risk observed across ethnoracial groups; second, the dynamic complexity of *APOE* 3D structure and its interaction with both lipid cargo and biological receptors, as well as its role as chaperon of aggregation-prone proteins such as A β ; third, the impact that *APOE* isoforms, mutations and post-translational modifications (for example, glycosylation) have on *APOE* 3D structure and interactions; and finally, the cell-autonomous and non-autonomous effects of each *APOE* isoform in each brain cell type before and after widespread neuropathology. This knowledge could ultimately translate into much needed effective therapies to prevent AD and/or slow down its clinical progression.

Acknowledgements

NIH/NIA (2RF1AG047644 to R.J.J. and B.T.H., 1RF1AG073236 to R.J.J., R56AG080525 to R.J.J. and B.T.H., 5U01NS111671 to B.T.H., 5K08AG064039 to A.S.-P. and P30AG062421 to A.S.-P. and B.T.H.), The Karen Toffler Charitable Trust (to A.S.-P. and B.T.H.), The Harrison Gardner Jr Innovation Award (to A.S.-P.) and The JPB Foundation (to B.T.H.).

Glossary

Adeno-associated viral vectors

Small non-pathogenic viruses that can infect cells and deliver a small single-stranded DNA cargo of <5 kb. This DNA is then transcribed and translated by the target cell generating the protein of interest.

Antisense oligonucleotides

(ASOs). ASOs are short RNA transcripts that are synthesized to be complementary to the sequence of a specific RNA target with the goals of preventing its translation into the protein and promoting its degradation. ASOs are often chemically modified to increase stability (resistance to degradation by RNase enzymes) and enhance cellular uptake.

ATP-binding cassette (ABC) transporters such as ABCA1 and ABCG

Transmembrane proteins that transport cholesterol and phospholipids out of the cell to lipid-poor apolipoproteins such as *APOE*.

Cell-autonomous and non-autonomous

Cell-autonomous effects are those that a perturbed cell exerts on itself or other cells of the same type. Cell-non-autonomous effects are those that a perturbed cell type (for example, astrocytes) exerts on other cell types (for example, microglia), either directly or via its secretome.

Exposome

Set of non-genetic risk factors that can impact the risk of developing certain disease (for example, cancer or Alzheimer disease) of an individual, including cumulative lifetime environmental exposures and lifestyle habits.

Global genetic ancestry

Genetic variability across the genome that determines the race and ethnicity of an individual based on the relative proportions of various population ancestries (for example, European, African, Amerindian or East Asian), not always coincident with self-reported categories.

Human-inducible pluripotent stem cells

(hiPSCs). Cells derived from skin or blood cells after reprogramming them back to a pluripotent embryonic-like state, which can be then differentiated to recapitulate any main brain cell type, although often embryonic or fetal in nature. Isogenic versions that are genetically identical except for the gene of interest (for example, *APOE*) can be generated with CRISPR–Cas9 technology.

Local genetic ancestry

Genetic variability surrounding a specific locus in the genome of an individual, which can include zero, one or two copies of an allele from each ancestral population, thereby affecting the expression of a gene of interest (for example, *APOE*).

Polygenic risk score

(PRS). An estimate of the genetic relative risk of an individual to develop a certain disease, calculated by applying the summary statistics from meta-analysis of genome-wide association studies involving thousands of cases and controls to the genetic variants of that particular individual.

Triggering receptor expressed on myeloid cells 2

(TREM2). A receptor expressed on the cell surface of immune cells, including microglia, that activates phagocytosis in response to extracellular stress signals (for example, A β) through the TYROBP–DAP12 signalling pathway.

References

1. Glenner GG & Wong CW Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. *Biochem. Biophys. Res. Commun.* 120, 885–890 (1984). [PubMed: 6375662]
2. van Dyck CH et al. Lecanemab in early Alzheimer's disease. *N. Engl. J. Med.* 388, 9–21 (2023). [PubMed: 36449413]
3. Mintun MA et al. Donanemab in early Alzheimer's disease. *N. Engl. J. Med.* 384, 1691–1704 (2021). [PubMed: 33720637]

4. Serrano-Pozo A, Aldridge GM & Zhang Q Four decades of research in Alzheimer's disease (1975–2014): a bibliometric and scientometric analysis. *J. Alzheimers Dis.* 59, 763–783 (2017). [PubMed: 28671119]
5. Corder EH et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. *Science* 261, 921–923 (1993). [PubMed: 8346443]
6. Farrer LA et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. *JAMA* 278, 1349–1356 (1997). [PubMed: 9343467]
7. Corder EH et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. *Nat. Genet.* 7, 180–184 (1994). [PubMed: 7920638]
8. Reiman EM et al. Exceptionally low likelihood of Alzheimer's dementia in APOE2 homozygotes from a 5,000-person neuropathological study. *Nat. Commun.* 11, 667 (2020). [PubMed: 32015339]
9. Mattsson N et al. Prevalence of the apolipoprotein E ε4 allele in amyloid β positive subjects across the spectrum of Alzheimer's disease. *Alzheimers Dement.* 14, 913–924 (2018). [PubMed: 29601787]
10. Belloy ME et al. APOE genotype and Alzheimer disease risk across age, sex, and population ancestry. *JAMA Neurol.* 80, 1284–1294 (2023). [PubMed: 37930705]
11. Granot-Hershkovitz E et al. APOE alleles' association with cognitive function differs across Hispanic/Latino groups and genetic ancestry in the study of Latinos — investigation of neurocognitive aging (HCHS/SOL). *Alzheimers Dement.* 17, 466–474 (2021). [PubMed: 33155766]
12. Rajabli F et al. Ancestral origin of ApoE ε4 Alzheimer disease risk in Puerto Rican and African American populations. *PLoS Genet.* 14, e1007791 (2018). [PubMed: 30517106]
13. Blue EE, Horimoto ARVR, Mukherjee S, Wijsman EM & Thornton TA Local ancestry at APOE modifies Alzheimer's disease risk in Caribbean Hispanics. *Alzheimers Dement.* 15, 1524–1532 (2019). [PubMed: 31606368]
14. Griswold AJ et al. Increased APOE ε4 expression is associated with the difference in Alzheimer's disease risk from diverse ancestral backgrounds. *Alzheimers Dement.* 17, 1179–1188 (2021). [PubMed: 33522086]
15. Nuytemans K et al. Identifying differential regulatory control of APOE ε4 on African versus European haplotypes as potential therapeutic targets. *Alzheimers Dement.* 18, 1930–1942 (2022). [PubMed: 34978147]
16. Fortea J et al. APOE4 homozygosity represents a distinct genetic form of Alzheimer's disease. *Nat. Med.* 30, 1284–1291 (2024). [PubMed: 38710950]
17. Qian J et al. APOE-related risk of mild cognitive impairment and dementia for prevention trials: an analysis of four cohorts. *PLoS Med.* 14, e1002254 (2017). [PubMed: 28323826]
18. Stites SD et al. Patients asking about APOE gene test results? Here's what to tell them. *J. Fam. Pract.* 71, E1–E7 (2022).
19. Wightman DP et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer's disease. *Nat. Genet.* 53, 1276–1282 (2021). [PubMed: 34493870]
20. Bellenguez C et al. New insights into the genetic etiology of Alzheimer's disease and related dementias. *Nat. Genet.* 54, 412–436 (2022). [PubMed: 35379992]
21. Huq AJ et al. Polygenic score modifies risk for Alzheimer's disease in APOE ε4 homozygotes at phenotypic extremes. *Alzheimers Dement.* 13, e12226 (2021).
22. Ebenau JL et al. Risk of dementia in APOE ε4 carriers is mitigated by a polygenic risk score. *Alzheimers Dement.* 13, e12229 (2021).
23. Erickson CM et al. KLOTHO heterozygosity attenuates APOE4-related amyloid burden in preclinical AD. *Neurology* 92, e1878–e1889 (2019). [PubMed: 30867273]
24. Belloy ME et al. Association of klotho vs heterozygosity with risk of Alzheimer disease in individuals who carry APOE4. *JAMA Neurol.* 77, 849–862 (2020). [PubMed: 32282020]
25. Neitzel J et al. KL-VS heterozygosity is associated with lower amyloid-dependent tau accumulation and memory impairment in Alzheimer's disease. *Nat. Commun.* 12, 3825 (2021). [PubMed: 34158479]

26. Ali M et al. Leveraging large multi-center cohorts of Alzheimer disease endophenotypes to understand the role of klotho heterozygosity on disease risk. *PLoS ONE* 17, e0267298 (2022). [PubMed: 35617280]

27. Huq AJ et al. Genetic resilience to Alzheimer's disease in APOE e4 homozygotes: a systematic review. *Alzheimers Dement.* 15, 1612–1623 (2019). [PubMed: 31506248]

28. Serrano-Pozo A & Growdon JH Is Alzheimer's disease risk modifiable? *J. Alzheimers Dis.* 67, 795–819 (2019). [PubMed: 30776012]

29. Jaisa-Aad M, Muñoz-Castro C & Serrano-Pozo A Update on modifiable risk factors for Alzheimer's disease and related dementias. *Curr. Opin. Neurol.* 37, 166–181 (2024). [PubMed: 38265228]

30. Kolli A et al. Interactions between the apolipoprotein E4 gene and modifiable risk factors for cognitive impairment: a nationally representative panel study. *BMC Geriatr.* 22, 938 (2022). [PubMed: 36474172]

31. Langella S et al. Effect of apolipoprotein genotype and educational attainment on cognitive function in autosomal dominant Alzheimer's disease. *Nat. Commun.* 14, 5120 (2023). [PubMed: 37612284]

32. Park S-Y et al. Modifying effects of race and ethnicity and APOE on the association of physical activity with risk of Alzheimer's disease and related dementias. *Alzheimers Dement.* 19, 507–517 (2023). [PubMed: 35476309]

33. Jia J et al. Association between healthy lifestyle and memory decline in older adults: 10 year, population based, prospective cohort study. *Br. Med. J.* 380, e072691 (2023). [PubMed: 36696990]

34. Park S-Y et al. Racial and ethnic differences in the population-attributable fractions of Alzheimer disease and related dementias. *Neurology* 102, e208116 (2024). [PubMed: 38232335]

35. Lee M et al. Variation in population attributable fraction of dementia associated with potentially modifiable risk factors by race and ethnicity in the US. *JAMA Netw. Open* 5, e2219672 (2022). [PubMed: 35793088]

36. Arboleda-Velasquez JF et al. Resistance to autosomal dominant Alzheimer's disease in an APOE3 Christchurch homozygote: a case report. *Nat. Med.* 25, 1680–1683 (2019). [PubMed: 31686034]

37. He KY et al. Characterization of APOE Christchurch carriers in 455,306 UK Biobank participants. *Mol. Neurodegener.* 18, 92 (2023). [PubMed: 38017580]

38. Wardell MR, Brennan SO, Janus ED, Fraser R & Carrell RW Apolipoprotein E2-Christchurch (136 Arg→Ser). New variant of human apolipoprotein E in a patient with type III hyperlipoproteinemia. *J. Clin. Invest.* 80, 483–490 (1987). [PubMed: 3038959]

39. Pocovi M et al. Incomplete dominance of type III hyperlipoproteinemia is associated with the rare apolipoprotein E2 (Arg136→Ser) variant in multigenerational pedigree studies. *Atherosclerosis* 122, 33–46 (1996). [PubMed: 8724110]

40. Hernandez I et al. Heterozygous APOE Christchurch in familial Alzheimer's disease without mutations in other Mendelian genes. *Neuropathol. Appl. Neurobiol.* 47, 579–582 (2021). [PubMed: 33095930]

41. Le Guen Y et al. Association of African ancestry-specific APOE missense variant r145c with risk of Alzheimer disease. *JAMA* 329, 551–560 (2023). [PubMed: 36809323]

42. Medway CW et al. ApoE variant p.V236E is associated with markedly reduced risk of Alzheimer's disease. *Mol. Neurodegener.* 9, 11 (2014). [PubMed: 24607147]

43. Le Guen Y et al. Association of rare APOE missense variants V236E and R251G with risk of Alzheimer disease. *JAMA Neurol.* 79, 652–663 (2022). [PubMed: 35639372]

44. Liu C-C et al. APOE3-Jacksonville (V236E) variant reduces self-aggregation and risk of dementia. *Sci. Transl. Med.* 13, eabc9375 (2021). [PubMed: 34586832]

45. Boyle PA et al. Person-specific contribution of neuropathologies to cognitive loss in old age. *Ann. Neurol.* 83, 74–83 (2018). [PubMed: 29244218]

46. Bennett DA et al. Amyloid mediates the association of apolipoprotein E e4 allele to cognitive function in older people. *J. Neurol. Neurosurg. Psychiatry* 76, 1194–1199 (2005). [PubMed: 16107349]

47. Mungas D, Tractenberg R, Schneider JA, Crane PK & Bennett DAA 2-process model for neuropathology of Alzheimer's disease. *Neurobiol. Aging* 35, 301–308 (2014). [PubMed: 24080173]

48. Serrano-Pozo A, Qian J, Monsell SE, Betensky RA & Hyman BT APOE ϵ 2 is associated with milder clinical and pathological Alzheimer disease. *Ann. Neurol.* 77, 917–929 (2015). [PubMed: 25623662]

49. Goldberg TE, Huey ED & Devanand DP Association of APOE ϵ 2 genotype with Alzheimer's and non-Alzheimer's neurodegenerative pathologies. *Nat. Commun.* 11, 4727 (2020). [PubMed: 32948752]

50. Goldberg TE, Huey ED & Devanand DP Associations of APOE ϵ 2 genotype with cerebrovascular pathology: a postmortem study of 1275 brains. *J. Neurol. Neurosurg. Psychiatry* 10.1136/jnnp-2020-323746 (2020).

51. Yu L et al. APOE and cerebral amyloid angiopathy in community-dwelling older persons. *Neurobiol. Aging* 36, 2946–2953 (2015). [PubMed: 26341746]

52. Thal DR et al. Capillary cerebral amyloid angiopathy identifies a distinct APOE ϵ 4-associated subtype of sporadic Alzheimer's disease. *Acta Neuropathol.* 120, 169–183 (2010). [PubMed: 20535486]

53. Farfel JM, Yu L, De Jager PL, Schneider JA & Bennett DA Association of APOE with tau-tangle pathology with and without β -amyloid. *Neurobiol. Aging* 37, 19–25 (2016). [PubMed: 26481403]

54. Oveisgharan S et al. APOE ϵ 2 ϵ 4 genotype, incident AD and MCI, cognitive decline, and AD pathology in older adults. *Neurology* 90, e2127–e2134 (2018). [PubMed: 29752306]

55. Lamar M et al. APOE genotypes as a risk factor for age-dependent accumulation of cerebrovascular disease in older adults. *Alzheimers Dement.* 15, 258–266 (2019). [PubMed: 30321502]

56. Greenberg SM et al. Association of apolipoprotein E ϵ 2 and vasculopathy in cerebral amyloid angiopathy. *Neurology* 50, 961–965 (1998). [PubMed: 9566379]

57. McCarron MO et al. The apolipoprotein E ϵ 2 allele and the pathological features in cerebral amyloid angiopathy-related hemorrhage. *J. Neuropathol. Exp. Neurol.* 58, 711–718 (1999). [PubMed: 10411341]

58. Serrano-Pozo A et al. Examination of the clinicopathologic continuum of Alzheimer disease in the autopsy cohort of the National Alzheimer Coordinating Center. *J. Neuropathol. Exp. Neurol.* 72, 1182–1192 (2013). [PubMed: 24226270]

59. Robinson JL et al. The development and convergence of co-pathologies in Alzheimer's disease. *Brain* 144, 953–962 (2021). [PubMed: 33449993]

60. Karanth S et al. Prevalence and clinical phenotype of quadruple misfolded proteins in older adults. *JAMA Neurol.* 77, 1299–1307 (2020). [PubMed: 32568358]

61. Walker JM & Richardson TE Cognitive resistance to and resilience against multiple comorbid neurodegenerative pathologies and the impact of APOE status. *J. Neuropathol. Exp. Neurol.* 82, 110–119 (2023). [PubMed: 36458951]

62. Dickson DW et al. APOE ϵ 4 is associated with severity of Lewy body pathology independent of Alzheimer pathology. *Neurology* 91, e1182–e1195 (2018). [PubMed: 30143564]

63. Yang H-S et al. Evaluation of TDP-43 proteinopathy and hippocampal sclerosis in relation to APOE ϵ 4 haplotype status: a community-based cohort study. *Lancet Neurol.* 17, 773–781 (2018). [PubMed: 30093249]

64. Wennberg AM et al. Association of apolipoprotein E ϵ 4 with transactive response DNA-binding protein 43. *JAMA Neurol.* 75, 1347–1354 (2018). [PubMed: 30422173]

65. Robinson JL et al. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. *Brain* 141, 2181–2193 (2018). [PubMed: 29878075]

66. Zhao N et al. APOE ϵ 2 is associated with increased tau pathology in primary tauopathy. *Nat. Commun.* 9, 4388 (2018). [PubMed: 30348994]

67. Sabir MS et al. Assessment of APOE in atypical parkinsonism syndromes. *Neurobiol. Dis.* 127, 142–146 (2019). [PubMed: 30798004]

68. Atherton K et al. Association of APOE genotypes and chronic traumatic encephalopathy. *JAMA Neurol.* 79, 787–796 (2022). [PubMed: 35759276]

69. Davis AA et al. APOE genotype regulates pathology and disease progression in synucleinopathy. *Sci. Transl. Med.* 12, eaay3069 (2020). [PubMed: 32024799]

70. Tsuang D et al. APOE ε4 increases risk for dementia in pure synucleinopathies. *JAMA Neurol.* 70, 223–228 (2013). [PubMed: 23407718]

71. Zhao N et al. APOE4 exacerbates α-synuclein pathology and related toxicity independent of amyloid. *Sci. Transl. Med.* 12, eaay1809 (2020). [PubMed: 32024798]

72. Kaivola K, Shah Z & Chia R, International LBD Genomics Consortium & Scholz, S. W. Genetic evaluation of dementia with Lewy bodies implicates distinct disease subgroups. *Brain* 145, 1757–1762 (2022). [PubMed: 35381062]

73. Talyansky S, Le Guen Y, Kasireddy N, Belloy ME & Greicius MD APOE-ε4 and BIN1 increase risk of Alzheimer's disease pathology but not specifically of Lewy body pathology. *Acta Neuropathol. Commun.* 11, 149 (2023). [PubMed: 37700353]

74. Ogaki K et al. Multiple system atrophy and apolipoprotein E. *Mov. Disord.* 33, 647–650 (2018). [PubMed: 29442376]

75. Meneses AD et al. APOE2 exacerbates TDP-43 related toxicity in the absence of Alzheimer pathology. *Ann. Neurol.* 93, 830–843 (2023). [PubMed: 36546684]

76. Caselli RJ et al. Longitudinal modeling of age-related memory decline and the APOE ε4 effect. *N. Engl. J. Med.* 361, 255–263 (2009). [PubMed: 19605830]

77. Shinohara M et al. APOE2 eases cognitive decline during aging: clinical and preclinical evaluations. *Ann. Neurol.* 79, 758–774 (2016). [PubMed: 26933942]

78. Yu L et al. APOE ε4, Alzheimer's disease pathology, cerebrovascular disease, and cognitive change over the years prior to death. *Psychol. Aging* 28, 1015–1023 (2013). [PubMed: 23647000]

79. Nichols E et al. AD and non-AD mediators of the pathway between the APOE genotype and cognition. *Alzheimers Dement.* 19, 2508–2519 (2023). [PubMed: 36516004]

80. Qian J, Betensky RA, Hyman BT & Serrano-Pozo A Association of APOE genotype with heterogeneity of cognitive decline rate in Alzheimer disease. *Neurology* 96, e2414–e2428 (2021). [PubMed: 33771840]

81. Qian J, Zhang Y, Betensky RA, Hyman BT & Serrano-Pozo A Neuropathology-independent association between *APOE* genotype and cognitive decline rate in the normal aging-early Alzheimer continuum. *Neurol. Genet.* 9, e200055 (2023). [PubMed: 36698453]

82. Bejanin A et al. Association of apolipoprotein E ε4 allele with clinical and multimodal biomarker changes of Alzheimer disease in adults with down syndrome. *JAMA Neurol.* 78, 937–947 (2021). [PubMed: 34228042]

83. Vélez JI et al. APOE*E2 allele delays age of onset in PSEN1 E280A Alzheimer's disease. *Mol. Psychiatry* 21, 916–924 (2016). [PubMed: 26619808]

84. Willer CJ et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. *Nat. Genet.* 40, 161–169 (2008). [PubMed: 18193043]

85. Kathiresan S et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. *Nat. Genet.* 40, 189–197 (2008). [PubMed: 18193044]

86. Natarajan P et al. Multiethnic exome-wide association study of subclinical atherosclerosis. *Circ. Cardiovasc. Genet.* 9, 511–520 (2016). [PubMed: 27872105]

87. Kuo C-L, Pilling LC, Atkins JL, Kuchel GA & Melzer D ApoE ε2 and aging-related outcomes in 379,000 UK Biobank participants. *Aging* 12, 12222–12233 (2020). [PubMed: 32511104]

88. Lumsden AL, Mulugeta A, Zhou A & Hyppönen E Apolipoprotein E (APOE) genotype-associated disease risks: a genome-wide, registry-based, case-control study utilising the UK Biobank. *eBioMedicine* 59, 102954 (2020). [PubMed: 32818802]

89. Ghiselli G, Gregg RE, Zech LA, Schaefer EJ & Brewer HB Phenotype study of apolipoprotein E isoforms in hyperlipoproteinaemic patients. *Lancet* 2, 405–407 (1982). [PubMed: 6124804]

90. Joshi PK et al. Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity. *Nat. Commun.* 8, 910 (2017). [PubMed: 29030599]

91. Pilling LC et al. Human longevity: 25 genetic loci associated in 389,166 UK biobank participants. *Aging* 9, 2504–2520 (2017). [PubMed: 29227965]

92. Deelen J et al. A meta-analysis of genome-wide association studies identifies multiple longevity genes. *Nat. Commun.* 10, 3669 (2019). [PubMed: 31413261]

93. Wolters FJ et al. The impact of APOE genotype on survival: results of 38,537 participants from six population-based cohorts (E2-CHARGE). *PLoS ONE* 14, e0219668 (2019). [PubMed: 31356640]

94. Shinohara M et al. APOE2 is associated with longevity independent of Alzheimer's disease. *eLife* 9, e62199 (2020). [PubMed: 33074098]

95. Yang LG, March ZM, Stephenson RA & Narayan PS Apolipoprotein E in lipid metabolism and neurodegenerative disease. *Trends Endocrinol. Metab.* 34, 430–445 (2023). [PubMed: 37357100]

96. Xu Q et al. Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. *J. Neurosci.* 26, 4985–4994 (2006). [PubMed: 16687490]

97. Mathys H et al. Single-cell transcriptomic analysis of Alzheimer's disease. *Nature* 570, 332–337 (2019). [PubMed: 31042697]

98. Hirsch-Reinshagen V et al. Deficiency of ABCA1 impairs apolipoprotein E metabolism in brain. *J. Biol. Chem.* 279, 41197–41207 (2004). [PubMed: 15269218]

99. Chen Y, Strickland MR, Soranno A & Holtzman DM Apolipoprotein E: structural insights and links to Alzheimer disease pathogenesis. *Neuron* 109, 205–221 (2021). [PubMed: 33176118]

100. Frieden C, Wang H & Ho CMW A mechanism for lipid binding to apoE and the role of intrinsically disordered regions coupled to domain–domain interactions. *Proc. Natl Acad. Sci. USA* 114, 6292–6297 (2017). [PubMed: 28559318]

101. Strickland MR et al. Apolipoprotein E secreted by astrocytes forms antiparallel dimers in discoidal lipoproteins. *Neuron* 112, 1100–1109.e5 (2024). [PubMed: 38266643]

102. Nguyen D et al. Molecular basis for the differences in lipid and lipoprotein binding properties of human apolipoproteins E3 and E4. *Biochemistry* 49, 10881–10889 (2010). [PubMed: 21114327]

103. Fernández-Calle R et al. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. *Mol. Neurodegener.* 17, 62 (2022). [PubMed: 36153580]

104. Kanekiyo T, Liu C-C, Shinohara M, Li J & Bu G LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid- β . *J. Neurosci.* 32, 16458–16465 (2012). [PubMed: 23152628]

105. Kanekiyo T et al. Neuronal clearance of amyloid- β by endocytic receptor LRP1. *J. Neurosci.* 33, 19276–19283 (2013). [PubMed: 24305823]

106. Shi Y et al. Overexpressing low-density lipoprotein receptor reduces tau-associated neurodegeneration in relation to apoE-linked mechanisms. *Neuron* 109, 2413–2426.e7 (2021). [PubMed: 34157306]

107. Castellano JM et al. Low-density lipoprotein receptor overexpression enhances the rate of brain-to-blood A β clearance in a mouse model of β -amyloidosis. *Proc. Natl Acad. Sci. USA* 109, 15502–15507 (2012). [PubMed: 22927427]

108. Kim J et al. Overexpression of low-density lipoprotein receptor in the brain markedly inhibits amyloid deposition and increases extracellular A beta clearance. *Neuron* 64, 632–644 (2009). [PubMed: 20005821]

109. Tzioras M, Davies C, Newman A, Jackson R & Spires-Jones T Invited review: APOE at the interface of inflammation, neurodegeneration and pathological protein spread in Alzheimer's disease. *Neuropathol. Appl. Neurobiol.* 45, 327–346 (2019). [PubMed: 30394574]

110. Wisniewski T & Frangione B Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid. *Neurosci. Lett.* 135, 235–238 (1992). [PubMed: 1625800]

111. Jones PB et al. Apolipoprotein E: isoform specific differences in tertiary structure and interaction with amyloid- β in human Alzheimer brain. *PLoS One* 6, e14586 (2011). [PubMed: 21297948]

112. Liu C-C et al. ApoE4 accelerates early seeding of amyloid pathology. *Neuron* 96, 1024–1032.e3 (2017). [PubMed: 29216449]

113. Hashimoto T et al. Apolipoprotein E, especially apolipoprotein E4, increases the oligomerization of amyloid β peptide. *J. Neurosci.* 32, 15181–15192 (2012). [PubMed: 23100439]

114. Hori Y, Hashimoto T, Nomoto H, Hyman BT & Iwatsubo T Role of apolipoprotein E in β -amyloidogenesis: isoform-specific effects on protofibril to fibril conversion of A β in vitro and brain A β deposition in vivo. *J. Biol. Chem.* 293, 7267 (2018). [PubMed: 29752420]

115. Garai K, Verghese PB, Baban B, Holtzman DM & Frieden C The binding of apolipoprotein E to oligomers and fibrils of amyloid- β alters the kinetics of amyloid aggregation. *Biochemistry* 53, 6323–6331 (2014). [PubMed: 25207746]

116. Kara E et al. A flow cytometry-based in vitro assay reveals that formation of apolipoprotein E (ApoE)-amyloid beta complexes depends on ApoE isoform and cell type. *J. Biol. Chem.* 293, 13247–13256 (2018). [PubMed: 29950521]

117. Fagan AM et al. Human and murine ApoE markedly alters A beta metabolism before and after plaque formation in a mouse model of Alzheimer's disease. *Neurobiol. Dis.* 9, 305–318 (2002). [PubMed: 11950276]

118. Bales KR et al. Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer's disease. *Proc. Natl Acad. Sci. USA* 96, 15233–15238 (1999). [PubMed: 10611368]

119. Irizarry MC et al. Apolipoprotein E affects the amount, form, and anatomical distribution of amyloid beta-peptide deposition in homozygous APP(V717F) transgenic mice. *Acta Neuropathol.* 100, 451–458 (2000). [PubMed: 11045665]

120. Youmans KL et al. APOE4-specific changes in A β accumulation in a new transgenic mouse model of Alzheimer disease. *J. Biol. Chem.* 287, 41774–41786 (2012). [PubMed: 23060451]

121. Huang Y-WA, Zhou B, Wernig M & Südhof TC ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and A β secretion. *Cell* 168, 427–441.e21 (2017). [PubMed: 28111074]

122. Hudry E et al. Opposing roles of apolipoprotein E in aging and neurodegeneration. *Life Sci. Alliance* 2, e201900325 (2019). [PubMed: 30760557]

123. Mak ACY et al. Effects of the absence of apolipoprotein E on lipoproteins, neurocognitive function, and retinal function. *JAMA Neurol.* 71, 1228 (2014). [PubMed: 25111166]

124. Huynh T-PV et al. Age-dependent effects of apoE reduction using antisense oligonucleotides in a model of β -amyloidosis. *Neuron* 96, 1013–1023.e4 (2017). [PubMed: 29216448]

125. Hou T et al. Apolipoprotein E facilitates amyloid- β oligomer-induced tau phosphorylation. *J. Alzheimers Dis.* 74, 521–534 (2020). [PubMed: 32065788]

126. Harris FM, Brecht WJ, Xu Q, Mahley RW & Huang Y Increased tau phosphorylation in apolipoprotein E4 transgenic mice is associated with activation of extracellular signal-regulated kinase: modulation by zinc. *J. Biol. Chem.* 279, 44795–44801 (2004). [PubMed: 15322121]

127. Shi Y et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. *Nature* 549, 523–527 (2017). [PubMed: 28959956]

128. Hudry E et al. Gene transfer of human Apoe isoforms results in differential modulation of amyloid deposition and neurotoxicity in mouse brain. *Sci. Transl. Med.* 5, 212ra161 (2013).

129. Parhizkar S & Holtzman DM APOE mediated neuroinflammation and neurodegeneration in Alzheimer's disease. *Semin. Immunol.* 59, 101594 (2022). [PubMed: 35232622]

130. Shi Y et al. Microglia drive APOE-dependent neurodegeneration in a tauopathy mouse model. *J. Exp. Med.* 216, 2546–2561 (2019). [PubMed: 31601677]

131. Jin Y et al. APOE4 exacerbates α -synuclein seeding activity and contributes to neurotoxicity in Alzheimer's disease with Lewy body pathology. *Acta Neuropathol.* 143, 641–662 (2022). [PubMed: 35471463]

132. Emamzadeh FN, Aojula H, McHugh PC & Allsop D Effects of different isoforms of apoE on aggregation of the α -synuclein protein implicated in Parkinson's disease. *Neurosci. Lett.* 618, 146–151 (2016). [PubMed: 26921451]

133. Lloyd GM et al. Carboxyl truncation of α -synuclein occurs early and is influenced by human APOE genotype in transgenic mouse models of α -synuclein pathogenesis. *Acta Neuropathol. Commun.* 11, 119 (2023). [PubMed: 37482615]

134. Nemergut M et al. Domino-like effect of C112R mutation on ApoE4 aggregation and its reduction by Alzheimer's disease drug candidate. *Mol. Neurodegener.* 18, 38 (2023). [PubMed: 37280636]

135. Zhang Y et al. A monomeric, biologically active, full-length human apolipoprotein E. *Biochemistry* 46, 10722–10732 (2007). [PubMed: 17715945]

136. Garai K, Baban B & Frieden C Dissociation of apoE oligomers to monomers is required for high affinity binding to phospholipid vesicles. *Biochemistry* 50, 2550–2558 (2011). [PubMed: 21322570]

137. Xiong M et al. APOE immunotherapy reduces cerebral amyloid angiopathy and amyloid plaques while improving cerebrovascular function. *Sci. Transl. Med.* 13, eabd7522 (2021). [PubMed: 33597265]

138. Gratuze M et al. APOE antibody inhibits A β -associated tau seeding and spreading in a mouse model. *Ann. Neurol.* 91, 847–852 (2022). [PubMed: 35285073]

139. Liao F et al. Targeting of nonlipidated, aggregated apoE with antibodies inhibits amyloid accumulation. *J. Clin. Invest.* 128, 2144–2155 (2018). [PubMed: 29600961]

140. Kara E et al. Isoform- and cell type-specific structure of apolipoprotein E lipoparticles as revealed by a novel Forster resonance energy transfer assay. *J. Biol. Chem.* 292, 14720–14729 (2017). [PubMed: 28684412]

141. Stuchell-Brereton MD et al. Apolipoprotein E4 has extensive conformational heterogeneity in lipid-free and lipid-bound forms. *Proc. Natl Acad. Sci. USA* 120, e2215371120 (2023). [PubMed: 36749730]

142. Suidan GL & Ramaswamy G Targeting apolipoprotein E for Alzheimer's disease: an industry perspective. *Int. J. Mol. Sci.* 20, 2161 (2019). [PubMed: 31052389]

143. Lin Y-T et al. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer's disease phenotypes in human iPSC-derived brain cell types. *Neuron* 98, 1141–1154.e7 (2018). [PubMed: 29861287]

144. Tcw J et al. Cholesterol and matrisome pathways dysregulated in astrocytes and microglia. *Cell* 185, 2213–2233.e25 (2022). [PubMed: 35750033]

145. Steele OG et al. A multi-hit hypothesis for an *APOE4*-dependent pathophysiological state. *Eur. J. Neurosci.* 56, 5476–5515 (2022). [PubMed: 35510513]

146. Farmer BC, Kluemper J & Johnson LA Apolipoprotein E4 alters astrocyte fatty acid metabolism and lipid droplet formation. *Cells* 8, 182 (2019). [PubMed: 30791549]

147. Schmukler E et al. Altered mitochondrial dynamics and function in APOE4-expressing astrocytes. *Cell Death Dis.* 11, 578 (2020). [PubMed: 32709881]

148. Mahan TE et al. Selective reduction of astrocyte apoE3 and apoE4 strongly reduces A β accumulation and plaque-related pathology in a mouse model of amyloidosis. *Mol. Neurodegener.* 17, 13 (2022). [PubMed: 35109920]

149. Wang C et al. Selective removal of astrocytic APOE4 strongly protects against tau-mediated neurodegeneration and decreases synaptic phagocytosis by microglia. *Neuron* 10.1016/j.neuron.2021.03.024 (2021).

150. Krasemann S et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. *Immunity* 47, 566–581.e9 (2017). [PubMed: 28930663]

151. Keren-Shaul H et al. A unique microglia type associated with restricting development of Alzheimer's disease. *Cell* 169, 1276–1290.e17 (2017). [PubMed: 28602351]

152. Serrano-Pozo A et al. Effect of APOE alleles on the glial transcriptome in normal aging and Alzheimer's disease. *Nat. Aging* 1, 919–931 (2021). [PubMed: 36199750]

153. Das S et al. Distinct transcriptomic responses to A β plaques, neurofibrillary tangles, and APOE in Alzheimer's disease. *Alzheimers Dement.* 20, 74–90 (2023). [PubMed: 37461318]

154. Stephen TL et al. APOE genotype and sex affect microglial interactions with plaques in Alzheimer's disease mice. *Acta Neuropathol. Commun.* 7, 82 (2019). [PubMed: 31113487]

155. Wang Y et al. TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. *J. Exp. Med.* 213, 667–675 (2016). [PubMed: 27091843]

156. Lanfranco MF, Sepulveda J, Kopetsky G & Rebeck GW Expression and secretion of apoE isoforms in astrocytes and microglia during inflammation. *Glia* 69, 1478–1493 (2021). [PubMed: 33556209]

157. Henningfield CM, Arreola MA, Soni N, Spangenberg EE & Green KN Microglia-specific ApoE knock-out does not alter Alzheimer's disease plaque pathogenesis or gene expression. *Glia* 70, 287–302 (2022). [PubMed: 34643971]

158. Yin Z et al. APOE4 impairs the microglial response in Alzheimer's disease by inducing TGF β -mediated checkpoints. *Nat. Immunol.* 24, 1839–1853 (2023). [PubMed: 37749326]

159. Buttini M et al. Cellular source of apolipoprotein E4 determines neuronal susceptibility to excitotoxic injury in transgenic mice. *Am. J. Pathol.* 177, 563–569 (2010). [PubMed: 20595630]

160. Konings SC, Torres-Garcia L, Martinsson I & Gouras GK Astrocytic and neuronal apolipoprotein E isoforms differentially affect neuronal excitability. *Front. Neurosci.* 15, 734001 (2021). [PubMed: 34621153]

161. Koutsodendris N et al. Neuronal APOE4 removal protects against tau-mediated gliosis, neurodegeneration and myelin deficits. *Nat. Aging* 3, 275–296 (2023). [PubMed: 37118426]

162. Cheng GW-Y et al. Apolipoprotein E e4 mediates myelin breakdown by targeting oligodendrocytes in sporadic Alzheimer disease. *J. Neuropathol. Exp. Neurol.* 81, 717–730 (2022). [PubMed: 35779013]

163. Blanchard JW et al. APOE4 impairs myelination via cholesterol dysregulation in oligodendrocytes. *Nature* 611, 769–779 (2022). [PubMed: 36385529]

164. Mok KK-S et al. Apolipoprotein E e4 disrupts oligodendrocyte differentiation by interfering with astrocyte-derived lipid transport. *J. Neurochem.* 165, 55–75 (2023). [PubMed: 36549843]

165. Chang S et al. Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. *Proc. Natl Acad. Sci. USA* 102, 18694–18699 (2005). [PubMed: 16344479]

166. Chen H-K et al. Apolipoprotein E4 domain interaction mediates detrimental effects on mitochondria and is a potential therapeutic target for Alzheimer disease. *J. Biol. Chem.* 286, 5215–5221 (2011). [PubMed: 21118811]

167. Parcon PA et al. Apolipoprotein E4 inhibits autophagy gene products through direct, specific binding to CLEAR motifs. *Alzheimers Dement.* 14, 230–242 (2018). [PubMed: 28945989]

168. Mary A, Eysert F, Checler F & Chami M Mitophagy in Alzheimer's disease: molecular defects and therapeutic approaches. *Mol. Psychiatry* 28, 202–216 (2023). [PubMed: 35665766]

169. Lee H et al. ApoE4-dependent lysosomal cholesterol accumulation impairs mitochondrial homeostasis and oxidative phosphorylation in human astrocytes. *Cell Rep.* 42, 113183 (2023). [PubMed: 37777962]

170. Yin J et al. Effect of ApoE isoforms on mitochondria in Alzheimer disease. *Neurology* 94, e2404–e2411 (2020). [PubMed: 32457210]

171. Calvo-Rodriguez M et al. Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer's disease. *Nat. Commun.* 11, 2146 (2020). [PubMed: 32358564]

172. Calvo-Rodriguez M et al. Real-time imaging of mitochondrial redox reveals increased mitochondrial oxidative stress associated with amyloid β aggregates in vivo in a mouse model of Alzheimer's disease. *Mol. Neurodegener.* 19, 6 (2024). [PubMed: 38238819]

173. Orr AL et al. Neuronal apolipoprotein E4 expression results in proteome-wide alterations and compromises bioenergetic capacity by disrupting mitochondrial function. *J. Alzheimers Dis.* 68, 991–1011 (2019). [PubMed: 30883359]

174. Area-Gomez E et al. APOE4 is associated with differential regional vulnerability to bioenergetic deficits in aged APOE mice. *Sci. Rep.* 10, 4277 (2020). [PubMed: 32152337]

175. Williams HC et al. APOE alters glucose flux through central carbon pathways in astrocytes. *Neurobiol. Dis.* 136, 104742 (2020). [PubMed: 31931141]

176. Lee S et al. APOE modulates microglial immunometabolism in response to age, amyloid pathology, and inflammatory challenge. *Cell Rep.* 42, 112196 (2023). [PubMed: 36871219]

177. Qi G et al. ApoE4 impairs neuron–astrocyte coupling of fatty acid metabolism. *Cell Rep.* 34, 108572 (2021). [PubMed: 33406436]

178. Haney MS et al. APOE4/4 is linked to damaging lipid droplets in Alzheimer's disease microglia. *Nature* 628, 154–161 (2024). [PubMed: 38480892]

179. Foley P Lipids in Alzheimer's disease: a century-old story. *Biochim. Biophys. Acta* 1801, 750–753 (2010). [PubMed: 20471492]

180. Wynne ME et al. APOE expression and secretion are modulated by mitochondrial dysfunction. *eLife* 12, e85779 (2023). [PubMed: 37171075]

181. Huynh T-PV et al. Lack of hepatic apoE does not influence early A β deposition: observations from a new APOE knock-in model. *Mol. Neurodegener.* 14, 37 (2019). [PubMed: 31623648]

182. Linton MF et al. Phenotypes of apolipoprotein B and apolipoprotein E after liver transplantation. *J. Clin. Invest.* 88, 270–281 (1991). [PubMed: 2056122]

183. Bell RD et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. *Nature* 485, 512–516 (2012). [PubMed: 22622580]

184. Jackson RJ et al. APOE4 derived from astrocytes leads to blood–brain barrier impairment. *Brain* 145, 3582–3593 (2022). [PubMed: 34957486]

185. Montagne A et al. APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline. *Nature* 581, 71–76 (2020). [PubMed: 32376954]

186. Xiong M et al. Astrocytic APOE4 removal confers cerebrovascular protection despite increased cerebral amyloid angiopathy. *Mol. Neurodegener.* 18, 17 (2023). [PubMed: 36922879]

187. Bonnar O et al. APOE4 expression confers a mild, persistent reduction in neurovascular function in the visual cortex and hippocampus of awake mice. *J. Cereb. Blood Flow Metab.* 43, 1826–1841 (2023). [PubMed: 37350319]

188. Koizumi K et al. Apoe4 disrupts neurovascular regulation and undermines white matter integrity and cognitive function. *Nat. Commun.* 9, 3816 (2018). [PubMed: 30232327]

189. Wiesmann M et al. A dietary treatment improves cerebral blood flow and brain connectivity in aging apoE4 mice. *Neural Plast.* 2016, 6846721 (2016). [PubMed: 27034849]

190. Cummings J et al. Lecanemab: appropriate use recommendations. *J. Prev. Alzheimers Dis.* 10, 362–377 (2023). [PubMed: 37357276]

191. Vance JM et al. Report of the APOE4 National Institute on Aging/Alzheimer Disease Sequencing Project Consortium Working Group: reducing APOE4 in carriers is a therapeutic goal for Alzheimer's disease. *Ann. Neurol.* 95, 625–634 (2024). [PubMed: 38180638]

192. Koffie RM et al. Apolipoprotein E4 effects in Alzheimer's disease are mediated by synaptotoxic oligomeric amyloid- β . *Brain* 135, 2155–2168 (2012). [PubMed: 22637583]

193. Kuszczak MA et al. Blocking the interaction between apolipoprotein E and A β reduces intraneuronal accumulation of A β and inhibits synaptic degeneration. *Am. J. Pathol.* 182, 1750–1768 (2013). [PubMed: 23499462]

194. Liu S et al. Blocking the apolipoprotein E/amyloid β interaction in triple transgenic mice ameliorates Alzheimer's disease related amyloid β and tau pathology. *J. Neurochem.* 128, 577–591 (2014). [PubMed: 24117759]

195. Christensen DJ et al. Apolipoprotein E and peptide mimetics modulate inflammation by binding the SET protein and activating protein phosphatase 2A. *J. Immunol.* 186, 2535–2542 (2011). [PubMed: 21289314]

196. Krishnamurthy K et al. ApoE mimetic improves pathology and memory in a model of Alzheimer's disease. *Brain Res.* 1733, 146685 (2020). [PubMed: 32007397]

197. Nelson MR et al. The APOE-R136S mutation protects against APOE4-driven Tau pathology, neurodegeneration and neuroinflammation. *Nat. Neurosci.* 26, 2104–2121 (2023). [PubMed: 37957317]

198. Chen Y et al. APOE3ch alters microglial response and suppresses A β -induced tau seeding and spread. *Cell* 187, 428–445.e20 (2023). [PubMed: 38086389]

199. Marino C et al. APOE Christchurch-mimetic therapeutic antibody reduces APOE-mediated toxicity and tau phosphorylation. *Alzheimers Dement.* 20, 819–836 (2023). [PubMed: 37791598]

200. Finkel RS et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. *N. Engl. J. Med.* 377, 1723–1732 (2017). [PubMed: 29091570]

201. Mendell JR et al. Single-dose gene-replacement therapy for spinal muscular atrophy. *N. Engl. J. Med.* 377, 1713–1722 (2017). [PubMed: 29091557]

202. Zhao L et al. Intracerebral adeno-associated virus gene delivery of apolipoprotein E2 markedly reduces brain amyloid pathology in Alzheimer's disease mouse models. *Neurobiol. Aging* 44, 159–172 (2016). [PubMed: 27318144]

203. Jackson RJ et al. APOE2 gene therapy reduces amyloid deposition and improves markers of neuroinflammation and neurodegeneration in a mouse model of Alzheimer disease. *Mol. Ther.* 32, 1373–1386 (2024). [PubMed: 38504517]

204. Rosenberg JB et al. AAVrh.10-mediated APOE2 central nervous system gene therapy for APOE4-associated Alzheimer's disease. *Hum. Gene Ther. Clin. Dev.* 29, 24–47 (2018). [PubMed: 29409358]

205. Ben Mkadem S, Benhamou M & Monteiro RC Understanding Fc receptor involvement in inflammatory diseases: from mechanisms to new therapeutic tools. *Front. Immunol.* 10, 811 (2019). [PubMed: 31057544]

206. Litvinchuk A et al. Apolipoprotein E4 reduction with antisense oligonucleotides decreases neurodegeneration in a tauopathy model. *Ann. Neurol.* 89, 952–966 (2021). [PubMed: 33550655]

207. Laffitte BA et al. LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. *Proc. Natl Acad. Sci. USA* 98, 507–512 (2001). [PubMed: 11149950]

208. Boehm-Cagan A & Michaelson DM Reversal of apoE4-driven brain pathology and behavioral deficits by bexarotene. *J. Neurosci.* 34, 7293–7301 (2014). [PubMed: 24849361]

209. Cramer PE et al. ApoE-directed therapeutics rapidly clear β -amyloid and reverse deficits in AD mouse models. *Science* 335, 1503–1506 (2012). [PubMed: 22323736]

210. Ghosal K et al. A randomized controlled study to evaluate the effect of bexarotene on amyloid- β and apolipoprotein E metabolism in healthy subjects. *Alzheimers Dement. (N. Y.)* 2, 110–120 (2016). [PubMed: 29067298]

211. Cummings JL et al. Double-blind, placebo-controlled, proof-of-concept trial of bexarotene Xin moderate Alzheimer's disease. *Alzheimers Res. Ther.* 8, 4 (2016). [PubMed: 26822146]

212. Boehm-Cagan A et al. ABCA1 agonist reverses the ApoE4-driven cognitive and brain pathologies. *J. Alzheimers Dis.* 54, 1219–1233 (2016). [PubMed: 27567858]

213. Brodbeck J et al. Structure-dependent impairment of intracellular apolipoprotein E4 trafficking and its detrimental effects are rescued by small-molecule structure correctors. *J. Biol. Chem.* 286, 17217–17226 (2011). [PubMed: 21454574]

214. Chen HK et al. Small molecule structure correctors abolish detrimental effects of apolipoprotein E4 in cultured neurons. *J. Biol. Chem.* 287, 5253–5266 (2012). [PubMed: 22158868]

215. Mahley RW & Huang Y Small-molecule structure correctors target abnormal protein structure and function: the structure corrector rescue of apolipoprotein E4-associated neuropathology. *J. Med. Chem.* 55, 8997–9008 (2012). [PubMed: 23013167]

216. Petros AM et al. Fragment-based discovery of an apolipoprotein E4 (apoE4) stabilizer. *J. Med. Chem.* 62, 4120–4130 (2019). [PubMed: 30933499]

217. Wang C et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. *Nat. Med.* 24, 647–657 (2018). [PubMed: 29632371]

218. Husain MA, Laurent B & Plourde M APOE and Alzheimer's disease: from lipid transport to physiopathology and therapeutics. *Front. Neurosci.* 15, 630502 (2021). [PubMed: 33679311]

219. Raulin A-C et al. ApoE in Alzheimer's disease: pathophysiology and therapeutic strategies. *Mol. Neurodegener.* 17, 72 (2022). [PubMed: 36348357]

220. Flowers SA, Grant OC, Woods RJ & Rebeck GW O-glycosylation on cerebrospinal fluid and plasma apolipoprotein E differs in the lipid-binding domain. *Glycobiology* 30, 74–85 (2020). [PubMed: 31616924]

221. Wahrle SE et al. ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted apoE. *J. Biol. Chem.* 279, 40987–40993 (2004). [PubMed: 15269217]

222. Sienski G et al. APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia. *Sci. Transl. Med.* 13, eaaz4564 (2021). [PubMed: 33658354]

223. Yeh FL, Wang Y, Tom I, Gonzalez LC & Sheng M TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia. *Neuron* 91, 328–340 (2016). [PubMed: 27477018]

224. Cooper JM et al. Regulation of tau internalization, degradation, and seeding by LRP1 reveals multiple pathways for tau catabolism. *J. Biol. Chem.* 296, 100715 (2021). [PubMed: 33930462]

225. Rauch JN et al. LRP1 is a master regulator of tau uptake and spread. *Nature* 580, 381–385 (2020). [PubMed: 32296178]

226. Holmes BB et al. Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. *Proc. Natl Acad. Sci. USA* 110, E3138–E3147 (2013). [PubMed: 23898162]

227. Reiman EM et al. Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer's disease. *Proc. Natl Acad. Sci. USA* 106, 6820–6825 (2009). [PubMed: 19346482]

228. Sperling RA et al. Association of factors with elevated amyloid burden in clinically normal older individuals. *JAMA Neurol.* 77, 735–745 (2020). [PubMed: 32250387]

229. Jansen WJ et al. Prevalence estimates of amyloid abnormality across the Alzheimer disease clinical spectrum. *JAMA Neurol.* 79, 228–243 (2022). [PubMed: 35099509]

230. Insel PS, Hansson O & Mattsson-Carlsson N Association between apolipoprotein E ϵ 2 vs ϵ 4, age, and β -amyloid in adults without cognitive impairment. *JAMA Neurol.* 78, 229–235 (2021). [PubMed: 33044487]

231. Ramanan VK et al. Association of apolipoprotein E ϵ 4, educational level, and sex with tau deposition and tau-mediated metabolic dysfunction in older adults. *JAMA Netw. Open* 2, e1913909 (2019). [PubMed: 31642932]

232. Young CB et al. APOE effects on regional tau in preclinical Alzheimer's disease. *Mol. Neurodegener.* 18, 1 (2023). [PubMed: 36597122]

233. Therriault J et al. Association of apolipoprotein E ϵ 4 with medial temporal tau independent of amyloid- β . *JAMA Neurol.* 77, 470–479 (2020). [PubMed: 31860000]

234. Steward A et al. ApoE4 and connectivity-mediated spreading of tau pathology at lower amyloid levels. *JAMA Neurol.* 80, 1295–1306 (2023). [PubMed: 37930695]

235. Ferrari-Souza JP et al. APOE ϵ 4 potentiates amyloid β effects on longitudinal tau pathology. *Nat. Aging* 3, 1210–1218 (2023). [PubMed: 37749258]

236. Morris JC et al. APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. *Ann. Neurol.* 67, 122–131 (2010). [PubMed: 20186853]

237. Maxwell SS et al. Genetic associations with brain microbleeds: systematic review and meta-analyses. *Neurology* 77, 158–167 (2011). [PubMed: 21715706]

238. Knol MJ et al. Association of common genetic variants with brain microbleeds: a genome-wide association study. *Neurology* 95, e3331–e3343 (2020). [PubMed: 32913026]

239. Charidimou A et al. APOE and cortical superficial siderosis in CAA: meta-analysis and potential mechanisms. *Neurology* 93, e358–e371 (2019). [PubMed: 31243071]

240. Auriel E et al. Validation of clinicoradiological criteria for the diagnosis of cerebral amyloid angiopathy-related inflammation. *JAMA Neurol.* 73, 197–202 (2016). [PubMed: 26720093]

241. Theodorou A et al. Clinical, neuroimaging, and genetic markers in cerebral amyloid angiopathy-related inflammation: a systematic review and meta-analysis. *Stroke* 54, 178–188 (2023). [PubMed: 36453271]

242. Reiman EM et al. Declining brain activity in cognitively normal apolipoprotein E ϵ 4 heterozygotes: a foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer's disease. *Proc. Natl Acad. Sci. USA* 98, 3334–3339 (2001). [PubMed: 11248079]

243. Reiman EM et al. Correlations between apolipoprotein E ϵ 4 gene dose and brain-imaging measurements of regional hypometabolism. *Proc. Natl Acad. Sci. USA* 102, 8299–8302 (2005). [PubMed: 15932949]

244. Langbaum JBS et al. Hypometabolism in Alzheimer-affected brain regions in cognitively healthy Latino individuals carrying the apolipoprotein E ϵ 4 allele. *Arch. Neurol.* 67, 462–468 (2010). [PubMed: 20385913]

245. Knopman DS et al. 18F-fluorodeoxyglucose positron emission tomography, aging, and apolipoprotein E genotype in cognitively normal persons. *Neurobiol. Aging* 35, 2096–2106 (2014). [PubMed: 24702820]

246. Malek-Ahmadi M et al. Plasma NfL is associated with the APOE ε4 allele, brain imaging measurements of neurodegeneration, and lower recall memory scores in cognitively unimpaired late-middle-aged and older adults. *Alzheimers Res. Ther.* 15, 74 (2023). [PubMed: 37038190]

247. Strom A et al. Cortical hypometabolism reflects local atrophy and tau pathology in symptomatic Alzheimer's disease. *Brain* 145, 713–728 (2022). [PubMed: 34373896]

248. Salvadó G et al. The protective gene dose effect of the APOE ε2 allele on gray matter volume in cognitively unimpaired individuals. *Alzheimers Dement.* 18, 1383–1395 (2022). [PubMed: 34877786]

249. Butt OH et al. Cognitively normal APOE ε4 carriers have specific elevation of CSF SNAP-25. *Neurobiol. Aging* 102, 64–72 (2021). [PubMed: 33765432]

250. Sun X et al. APOE ε4 carriers may undergo synaptic damage conferring risk of Alzheimer's disease. *Alzheimers Dement.* 12, 1159–1166 (2016). [PubMed: 27321472]

251. Ferrari-Souza JP et al. APOEε4 associates with microglial activation independently of Aβ plaques and tau tangles. *Sci. Adv.* 9, eade1474 (2023). [PubMed: 37018391]

252. Benedet AL et al. Differences between plasma and cerebrospinal fluid glial fibrillary acidic protein levels across the Alzheimer disease continuum. *JAMA Neurol.* 78, 1471–1483 (2021). [PubMed: 34661615]

253. Spotorno N et al. Astrocytic function is associated with both amyloid-β and tau pathology in non-demented APOE ε4 carriers. *Brain Commun.* 4, fcac135 (2022). [PubMed: 35702728]

254. Operto G et al. Interactive effect of age and APOE-ε4 allele load on white matter myelin content in cognitively normal middle-aged subjects. *NeuroImage Clin.* 24, 101983 (2019). [PubMed: 31520917]

255. Triebswetter C et al. Differential associations between apolipoprotein E alleles and cerebral myelin content in normative aging. *NeuroImage* 251, 118988 (2022). [PubMed: 35150834]

256. Janelidze S et al. Increased blood-brain barrier permeability is associated with dementia and diabetes but not amyloid pathology or APOE genotype. *Neurobiol. Aging* 51, 104–112 (2017). [PubMed: 28061383]

257. Cicognola C et al. Associations of CSF PDGFRβ with aging, blood-brain barrier damage, neuroinflammation, and Alzheimer disease pathologic changes. *Neurology* 101, e30–e39 (2023). [PubMed: 37137722]

258. Mahley RW & Rall SC Is ε4 the ancestral human apoE allele? *Neurobiol. Aging* 20, 429–430 (1999). [PubMed: 10604434]

259. Seixas S, Trovoada MJ & Rocha J Haplotype analysis of the apolipoprotein E and apolipoprotein C1 loci in Portugal and São Tomé e Príncipe (Gulf of Guinea): linkage disequilibrium evidence that APOE*4 is the ancestral APOE allele. *Hum. Biol.* 71, 1001–1008 (1999). [PubMed: 10592690]

260. Fullerton SM et al. Apolipoprotein E variation at the sequence haplotype level: implications for the origin and maintenance of a major human polymorphism. *Am. J. Hum. Genet.* 67, 881–900 (2000). [PubMed: 10986041]

261. Smith CJ & Ashford JW Apolipoprotein ε4-associated protection against pediatric enteric infections is a survival advantage in pre-industrial populations. *J. Alzheimers Dis.* 93, 907–918 (2023). [PubMed: 37125551]

262. Trumble BC et al. Apolipoprotein-ε4 is associated with higher fecundity in a natural fertility population. *Sci. Adv.* 9, eade9797 (2023). [PubMed: 37556539]

263. Ostendorf BN et al. Common germline variants of the human APOE gene modulate melanoma progression and survival. *Nat. Med.* 26, 1048–1053 (2020). [PubMed: 32451497]

264. Zokaei N et al. Short-term memory advantage for brief durations in human APOE ε4 carriers. *Sci. Rep.* 10, 9503 (2020). [PubMed: 32528115]

265. Lancaster C, Forster S, Tabet N & Rusted J Putting attention in the spotlight: the influence of APOE genotype on visual search in mid adulthood. *Behav. Brain Res.* 334, 97–104 (2017). [PubMed: 28750833]

266. Lancaster C, Tabet N & Rusted J The APOE paradox: do attentional control differences in mid-adulthood reflect risk of late-life cognitive decline. *Neurobiol. Aging* 48, 114–121 (2016). [PubMed: 27661410]

267. Lancaster C, Tabet N & Rusted J The elusive nature of APOE ε4 in mid-adulthood: understanding the cognitive profile. *J. Int. Neuropsychol. Soc.* 23, 239–253 (2017). [PubMed: 28059047]

268. Lu K et al. Dissociable effects of APOE-ε4 and β-amyloid pathology on visual working memory. *Nat. Aging* 1, 1002–1009 (2021). [PubMed: 34806027]

269. Zink N, Bensmann W, Arning L, Beste C & Stock A-K Apolipoprotein ε4 is associated with better cognitive control allocation in healthy young adults. *NeuroImage* 185, 274–285 (2019). [PubMed: 30342978]

270. Sullivan PM et al. Targeted replacement of the mouse apolipoprotein E gene with the common human APOE3 allele enhances diet-induced hypercholesterolemia and atherosclerosis. *J. Biol. Chem.* 272, 17972–17980 (1997). [PubMed: 9218423]

271. Sullivan PM, Mezdour H, Quarfordt SH & Maeda N Type III hyperlipoproteinemia and spontaneous atherosclerosis in mice resulting from gene replacement of mouse Apoe with human Apoe*2. *J. Clin. Invest.* 102, 130–135 (1998). [PubMed: 9649566]

272. Raffai RL, Dong LM, Farese RV & Weisgraber KH Introduction of human apolipoprotein E4 ‘domain interaction’ into mouse apolipoprotein E. *Proc. Natl Acad. Sci. USA* 98, 11587–11591 (2001). [PubMed: 11553788]

273. Foley KE et al. The APOE ε3/ε4 genotype drives distinct gene signatures in the cortex of young mice. *Front. Aging Neurosci.* 14, 838436 (2022). [PubMed: 35370604]

274. Piedrahita JA, Zhang SH, Hagaman JR, Oliver PM & Maeda N Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. *Proc. Natl Acad. Sci. USA* 89, 4471–4475 (1992). [PubMed: 1584779]

275. Raber J et al. Isoform-specific effects of human apolipoprotein E on brain function revealed in ApoE knockout mice: increased susceptibility of females. *Proc. Natl Acad. Sci. USA* 95, 10914–10919 (1998). [PubMed: 9724804]

276. Sun Y et al. Glial fibrillary acidic protein-apolipoprotein E (apoE) transgenic mice: astrocyte-specific expression and differing biological effects of astrocyte-secreted apoE3 and apoE4 lipoproteins. *J. Neurosci.* 18, 3261–3272 (1998). [PubMed: 9547235]

277. Golden LR & Johnson LA APOE allele switching in a novel transgenic mouse model as a therapeutic approach for Alzheimer’s disease. *Alzheimers Dement.* 18, e060213 (2022).

Box 1 |**Biomarker correlates of the *APOE* genotype****Alzheimer disease (AD)**

- *APOEe4* carriers show higher PET amyloid- β (A β) burden than non-carriers across the normal ageing–AD dementia continuum^{227–229}.
- The *APOEe2* allele is protective against A β plaque deposition: cognitively unimpaired *APOEe2/e4* carriers have lower PET A β plaque burden than age-matched *APOEe3/e4* participants^{229,230}.
- *APOEe4* and *APOEe2* carriers have a greater and lower PET tau accumulation, respectively, than *APOEe3* homozygotes after adjusting for PET A β plaque burden, supporting a direct impact of the *APOE* genotype on tau neurofibrillary tangle pathology^{231–235}.
- In cerebrospinal fluid (CSF), A β levels are lower in e4 carriers and higher in e2 carriers; total tau or pTau levels are unaffected by the *APOE* genotype²³⁶.

Cerebral amyloid angiopathy (CAA)

- *APOEe4* carriers are more likely to exhibit MRI biomarkers of CAA, such as lobar cerebral microbleeds^{237,238} and cortical superficial siderosis, than *APOEe3* homozygotes²³⁹.
- The *APOEe2* allele correlates with cortical superficial siderosis, possibly owing to its vasculopathic effects^{56,239}.
- The *APOEe4* allele is over-represented in people with CAA-related inflammation, a rare entity in which autoimmune humoral and cellular responses to A β -laden arterioles lead to brain oedema presenting with encephalopathy, headaches and seizures^{240,241}.

Neurodegeneration

- Cognitively unimpaired *APOEe4* carriers have lower cortical glucose metabolism by ¹⁸F-fluoro-deoxy-glucose-PET^{242–246} and higher neurofilament light-chain plasma levels²⁴⁶ than non-carriers, but these associations are likely to be dependent on *APOE* genotype effects on A β plaque and tau burdens²⁴⁷.
- Cognitively unimpaired *APOEe2/e3* heterozygotes and *APOEe2* homozygotes have greater grey matter volume than *APOEe3* homozygotes in areas typically affected by AD neuropathology, suggesting resilience²⁴⁸.
- The CSF synaptic markers SNAP-25 (ref. 249) and neurogranin²⁵⁰ are elevated in *APOEe4* carriers with normal cognition and mild cognitive impairment, respectively, compared with non-carriers, suggesting early synaptic loss.

- SNAP-25 was elevated even in amyloid PET-negative individuals²⁴⁹, whereas neurogranin was not significantly associated with the APOE genotype after controlling for CSF A β and pTau levels²⁵⁰.

Neuroinflammation

- Translocator protein (TSPO) PET imaging shows more neuroinflammation in *APOE* ϵ 4 carriers than non-carriers independently of PET global A β plaque and local tau burdens²⁵¹.

Reactive astrogliosis

- Neither plasma nor CSF glial fibrillary acidic protein levels differ according to *APOE* ϵ 4 status when adjusting for PET A β plaque burden and clinical status²⁵².
- Plasma glial fibrillary acidic protein levels correlate with PET A β plaque burden independently of *APOE* genotype²⁵³.
- Myoinositol levels measured by MR spectroscopy as a proxy for astrocyte function correlate with PET A β plaque and, to a lesser extent, tau burden only in *APOE* ϵ 4 carriers, and partly mediate the effect of A β on tau²⁵³.

Myelin integrity

- MRI in cognitively unimpaired individuals suggests that *APOE* ϵ 4 might accelerate age-related loss of myelin brain content^{254,255}.

Blood–brain barrier (BBB) damage

- Dynamic contrast-enhanced MRI shows BBB breakdown in cognitively unimpaired and mildly impaired *APOE* ϵ 4 carriers relative to *APOE* ϵ 3 homozygotes, especially in the medial temporal lobe.
- Cognitively unimpaired and mildly impaired *APOE* ϵ 4 carriers have increased CSF levels of platelet-derived growth factor receptor β , albumin quotient, cyclophilin A and matrix metalloproteinase 9 (ref. 185), indicative of pericyte degeneration and BBB permeability. However, larger studies have failed to detect an independent association between *APOE* genotype and CSF/plasma albumin quotient^{256,257} or CSF platelet-derived growth factor receptor- β levels²⁵⁷ and instead have implicated diabetes²⁵⁶, dementia (regardless of clinical type)²⁵⁶, age²⁵⁷ or reactive astrogliosis²⁵⁷ in BBB damage.

Box 2 |**Possible evolutionary benefits of *APOE*ε4 in early life**

The high frequency of *APOE*ε4 in the general population contrasts with all its deleterious consequences in late life. It has been proposed that *APOE*ε4 is the ancestral variant and that the *APOE*ε3 and *APOE*ε2 alleles arose around 200,000–300,000 years ago^{258–260}.

Given that genetic variants are preserved or extinguished by the pressure of natural selection and *APOE*ε4 is so deleterious later in life, researchers have asked what evolutionary benefits might be associated with *APOE*ε4 carriage earlier in life. In evolutionary genetics, this concept is called antagonistic pleiotropy. Invoked advantages of the *APOE*ε4 allele include enhanced innate immunity to fight childhood enteric infections²⁶¹; improved fecundity and fertility²⁶²; reduced incidence and aggressiveness of melanoma²⁶³ and other cancers; and even a cognitive edge over young adult *APOE*ε3 homozygotes in some cognitive tasks, such as short-term memory for brief periods²⁶⁴, visual search and attention control^{265–267}, visual working memory²⁶⁸ and tasks requiring high-demand cognitive control²⁶⁹. More evidence is needed to support this hypothesis including large population-based birth cohort studies, ideally complemented with electronic health records and with fluid and imaging biomarkers.

Box 3 |**Mouse models to study APOE*****APOE*-targeted replacement mice**

Endogenous mouse *Apoe* was replaced with human *APOE* with a mouse line for each isoform. This model has been crossed with both A β plaque-depositing and tauopathy models^{270–272}.

***APOE* knock-in mice (MODEL-AD and JAX)**

The mouse *Apoe* gene was humanized through homologous recombination to generate an *APOE4* knock-in line, whereas the other two *APOE* isoforms were generated by applying CRISPR–Cas9 editing to this original *APOE4* line²⁷³.

***APOE* knock-in floxed mice (CureAlz)**

The mouse *Apoe* gene was replaced with one of the three human *APOE* alleles flanked by loxP sites, which enable the conditional removal of *APOE* upon *Cre* recombinase expression¹⁸¹. These mice have been crossed with constitutive and inducible mouse lines expressing *Cre* in various cell types, namely, astrocytes and microglia, and the resulting mice have been crossed with A β plaque-depositing and tauopathy models. *APOE3* and *APOE4* Christchurch mice have been generated by introducing the R136S mutation within *APOE3* or *APOE4* using a CRISPR–Cas9 knock-in strategy^{197,198}.

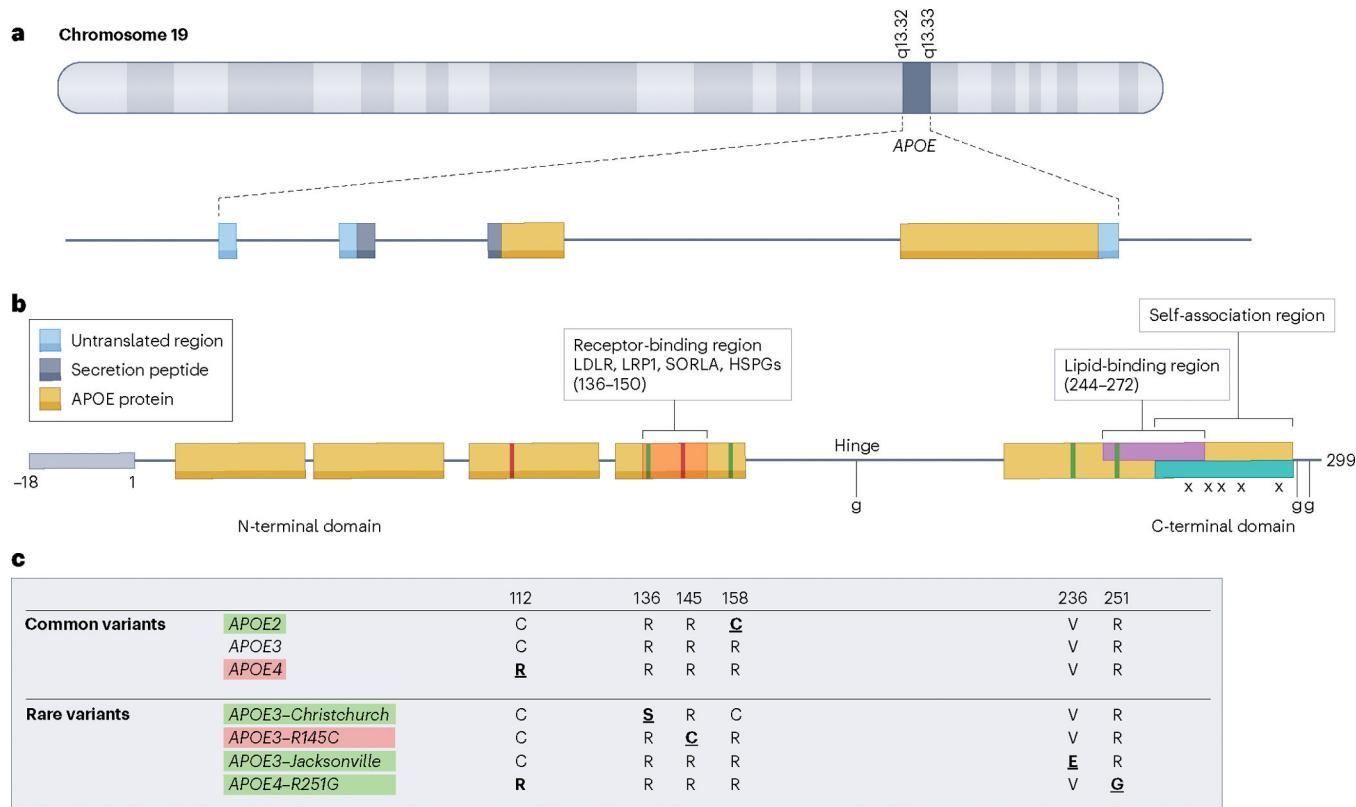
***Apoe* knockout mice**

The endogenous mouse *Apoe* gene was inactivated by homologous recombination and insertion of a neomycin cassette²⁷⁴. These mice have been crossed with A β plaque-depositing and tauopathy models.

Mice with cell type-specific *APOE* expression

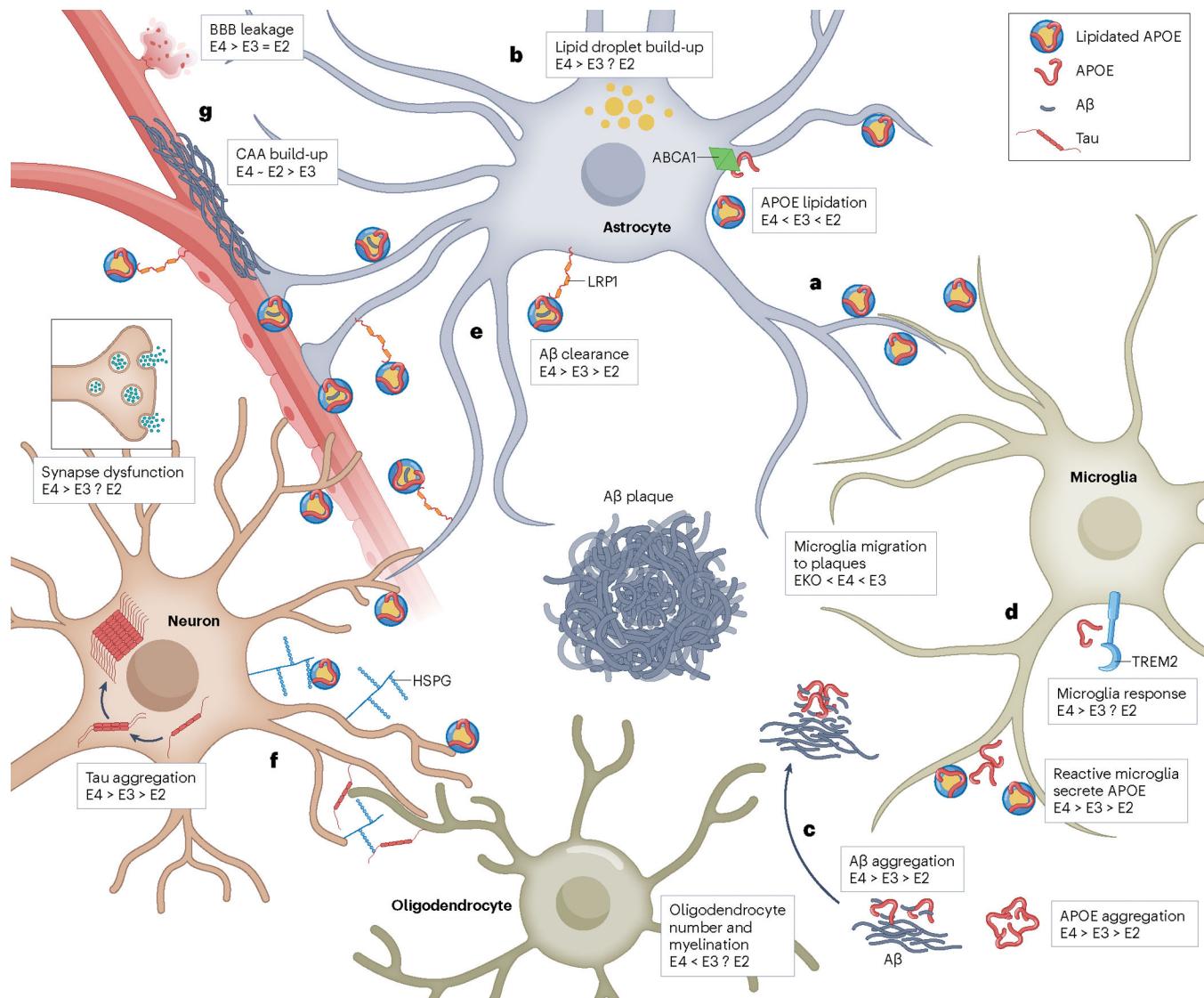
These mice express an *APOE3* or *APOE4* minigene specifically in neurons under the control of the neuron-specific enolase promotor, or in astrocytes under the glial fibrillary acidic protein promotor^{275,276}.

***APOE*-inducible mice**


These mice express *APOE3* or *APOE4* exclusively in cells expressing *Cre* recombinase upon treatment with oral doxycycline¹¹². The inserted cassette also contains enhanced green fluorescent protein. These mice have been crossed to various *Cre* lines as well as A β plaque-depositing mice.

***APOE* switch mice**

These mice express *APOE4* until their *Cre* recombinase excises *APOE4*, causing a switch to expression of *APOE2* (ref. 277). They have been crossed to different *Cre* lines as well as A β plaque-depositing mice.


Key points

- The risk of Alzheimer disease associated with the *APOE* genotype is modulated by global and local genetic ancestries, other genetic risk loci and the lifetime exposome of an individual.
- *APOE* missense mutations are providing key insights into the pathophysiology of the classic three *APOE* isoforms.
- The *APOE* genotype might modulate the risk of other neurodegenerative diseases by influencing the pathobiology of their culprit aggregation-prone proteins.
- The *APOE* isoforms affect a wide range of molecular and cellular functions in multiple brain cell types via cell-autonomous and non-autonomous mechanisms.
- Several strategies to target *APOE* therapeutically have shown efficacy in preclinical studies and hold promise for translation into clinical trials.

Fig. 1 |. Schematic illustration of structural and functional regions of APOE.

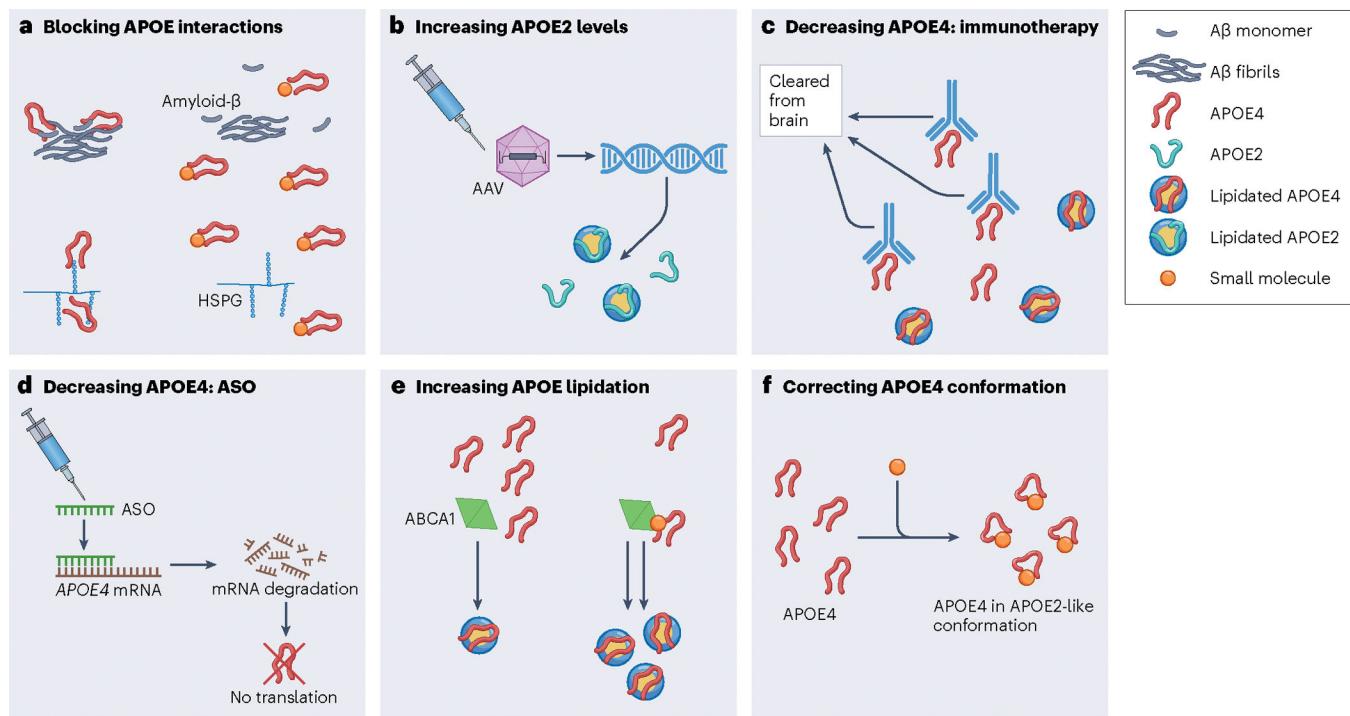

a, The *APOE* gene is located on chromosome 19 at position q13.3 and is transcribed into four exons²¹⁸. **b**, Apolipoprotein E (APOE) is activated after the cleavage of an 18 amino acid secretion peptide and consists of an N-terminal domain comprising four bundled α -helices and a helical C-terminal domain separated by a flexible hinge region²¹⁹. The N-terminal domain contains the receptor-binding region as well as the polymorphisms that differentiate the common APOE isoforms. The C-terminal domain contains the lipid-binding region and a self-associate region that required five mutations (each denoted with an X) to allow the protein to be crystallized¹³⁵. APOE isoforms are differentially *O*-linked glycosylated and the main sites are indicated²²⁰. **c**, The positions of residues that modify Alzheimer disease risk in the three *APOE* haplotype common variants and in the rarer missense mutations are indicated with red lines for deleterious mutations (text highlighted in red) and green lines for protective mutations (text highlighted in green). HSPG, heparan sulfate proteoglycan.

Fig. 2 |. Multifaceted roles of APOE in Alzheimer disease pathophysiology.

Apolipoprotein E (APOE) is produced mainly by astrocytes in the healthy brain but also by reactive microglia in the brains of people with Alzheimer disease⁹⁶. **a**, APOE is lipidated mainly by the lipid transporter ABCA1, which is located in the astrocyte plasma membrane²²¹. **b**, APOE4 promotes the accumulation of lipid droplets in the astrocyte cytoplasm, which is indicative of impaired astrocyte lipid transport and energy metabolism²²². **c**, APOE interacts with the amyloid-β (Aβ) peptide, with APOE4 promoting its oligomerization, fibrillization and seeding into Aβ plaques^{113,115,192} and increasing cerebral amyloid angiopathy (CAA)⁴⁸. **d**, APOE interacts with TREM2 in the microglia plasma membrane and affects microglial responses to Aβ and tau (for example, microglial migration to the plaques) in an isoform-dependent manner^{150,154,223}. **e**, APOE is internalized by astrocytes, neurons and endothelial cells via LRP1-mediated endocytosis, which has also been implicated in tau uptake by neurons^{224,225}. **f**, Extracellular tau and APOE might compete for binding to heparan sulfate proteoglycans (HSPGs) on the neuron

surface, with potential implications for tau propagation^{199,226}. **g**, Besides CAA, APOE4 promotes blood–brain barrier (BBB) disruption and both leakage of plasma proteins and microbleeds^{183,185}. E4, *APOE4*; E3, *APOE3*; E2, *APOE2*; EKO, *APOE* knockout; ‘?’ indicates phenomenon has either not been studied in *APOE2* or reports are contradictory.

Fig. 3 | Therapeutic approaches targeting APOE.

Schematic illustrates the main therapeutic strategies targeting apolipoprotein E (APOE) that have been tested in mouse models. **a**, Blocking APOE interactions using small molecule mimetics of the amyloid p (Ap)-APOE binding domains^{193,194}. **b**, Increasing APOE2 levels via adeno-associated viral (AAV) vector delivery of *APOE2* (refs. 202,203). **c**, Decreasing APOE4 levels using anti-APOE antibodies **d**, Decreasing APOE4 levels using antisense oligonucleotides (ASOs)²⁰⁶. **e**, Increasing APOE lipidation by upregulation of ABCA1 with small molecule peptide mimetics²¹². **f**, Using small molecules to correct APOE4 conformation so that it resembles APOE2 (refs. 213,216). HSPG, heparan sulfate proteoglycan.

APOE mutations that affect Alzheimer disease risk

Table 1 |

APOE alteration	APOE haplotype	SNP	Amino acid substitution	Major/minor allele	Non-stratified analyses ^a		Stratified analyses ^b		Reference
					OR (95% CI)	P value	OR (95% CI)	P value	
R136S (Christchurch)	<i>APOEε3</i>	rs121918393	Arg→Ser	C/a	NA	NA	NA	NA	Arboleda-Velasquez et al. ³⁶
R145C	<i>APOEε3</i>	rs769455	Arg→Cys	C/t	NA	NA	2.75 (1.84–4.11)	8.3 × 10 ^{−7}	Le Guen et al. ⁴¹
V236E (Jacksonville)	<i>APOEε3</i>	rs199768005	Val→Glu	T/a	NA	NA	0.10 (0.02–0.35)	2.16 × 10 ^{−3}	Medway et al. ⁴²
R251G	<i>APOEε4</i>	rs267606661	Arg→Gly	C/g	0.44 (0.33–0.59)	4.7 × 10 ^{−8}	0.41 (0.29–0.57)	3.2 × 10 ^{−7}	Le Guen et al. ⁴³

NA, not available.

^aCompared with all *APOE* alleles.^bCompared with specific *APOE* genotypes: *APOEε3* R145C in *APOEε3* + *APOEε2*/ε4; *APOEε3* V236E versus *APOEε3* + *APOEε2*/ε3; *APOEε4* R251G versus *APOEε3*/ε4.