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Abstract
Alzheimer’s disease (AD) is a relentlessly progressive, fatal neurodegenerative1

disorder associated with widespread aberrant proteomic changes. The full extent2

of protein dysfunctions in AD and their impact on cellular physiology remains3

unknown. Here, we used plexDIA, an approach that parallelizes the acquisition4

of samples and peptides, to characterize proteomic changes in AD. Using human5

dorsolateral prefrontal cortex tissue, we identified 281 differentially abundant pro-6

teins in AD. By systematically analyzing cellular compartment-specific shifts in7

protein abundance, we identified an AD-specific decrease in levels of the 20S8

proteasome, the catalytic core of the cell’s primary protein degradation pathway.9

This alteration was accompanied by widespread decreases in proteasome subunit10

stoichiometries. Many proteasome substrate proteins were negatively correlated11

with 20S levels and increased in AD, suggesting that reduced 20S levels leads12

to abnormal protein accumulation. By analyzing proteins increased in AD, we13

identify key properties of such proteins. Namely, they have highly specific subcel-14

lular localizations and fast degradation rates, they contain signal sequences that15

allow them to be targeted for proteasomal degradation, and they are targeted by16

quality control pathways that recognize mislocalized proteins. Furthermore, we17

identify coherent sets of ubiquitin system enzymes, proteins that target substrates18

for proteasomal degradation, whose levels robustly discriminate AD from non-AD19

samples. One subset exhibited consistent increases in AD, while another exhibited20

consistent decreases, revealing complex alterations to the ubiquitin system in AD.21

Taken together, our results suggest that decreased ubiquitin-proteasome system22

capacity and impaired clearance of short-lived and mislocalized proteins contribute23

substantially to proteopathic burden in AD.24
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Introduction25

Alzheimer’s disease (AD), the most common form of dementia, results in pro-26

gressive memory loss, emotional disturbances, and cognitive dysfunction1, 2. The27

disease’s defining pathological features are filamentous intracellular inclusions28

containing hyperphosphorylated tau and extracellular aggregates of amyloid beta29

peptide3–5. However, protein dysfunctions in AD affect a multitude of proteins with30

distinct sequence compositions, structures, functions, and subcellular localizations.31

For example, neuronal inclusions containing the synaptic protein alpha-synuclein6, 7,32

the nuclear RNA-binding protein TDP-436, 8, and components of the U1 small nu-33

clear ribonucleoprotein spliceosome9, 10 often occur in AD-afflicted neurons. These34

protein lesions exert numerous downstream effects on neuronal physiology and35

protein homeostasis11–13 which may further exacerbate the development and spread36

of AD protein pathologies and neuron loss14. The full extent of protein dysfunctions37

in AD and the mechanisms that give rise to them remain incompletely characterized,38

limiting our understanding of the disease’s causes and hindering efforts to develop39

disease-modifying therapies15.40

Mass spectrometry (MS) offers a comprehensive means of characterizing AD-41

associated protein dysfunctions. In particular, MS instruments can directly measure42

a sample’s complement of proteins with high sensitivity and quantitative accu-43

racy16, 17. Using such data to identify individual proteins with large fold changes44

between AD and non-AD samples can reveal novel AD protein dysfunctions and45

pathologies9, 10 in addition to robustly detecting increases in proteins known to46

form pathological aggregates in AD9, 10, 18, 19. AD protein pathologies reflect a fail-47

ure of quality control mechanisms to clear aberrantly misfolded, damaged, and48

aggregated proteins from cells12, 13. As a post-mitotic cell population, neurons are49

acutely vulnerable to these challenges, as they cannot reduce proteopathic burden50

by dilution through cell division13, 20. However, because of the large changes in51

protein abundance that result from AD protein pathologies, these changes can be52

readily detected in bulk brain tissue samples containing multiple cell types with53

varying degrees of AD pathology9, 10, 18, 19, 21, 22. Proteomic analysis of bulk samples54

thus holds considerable promise for identifying novel AD protein dysfunctions and55

pathologies at the level of individual proteins.56

Proteomic data has also proven valuable for providing systems-level insights into57

the molecular mechanisms of AD and AD-associated protein pathologies. Pairing58
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large-scale proteomic data with systems-level analytical approaches can detect59

alterations to biological processes and cellular compartments in AD23–25. For60

example, proteomic profiling of AD samples detects the expected strong and61

significant downward shift in cytoskeletal and synaptic proteins, reflecting the loss62

of cytoskeletal integrity following tau dissociation from microtubules and synaptic63

dysfunction, respectively23–25. Upward shifts in inflammation-related proteins64

similarly reflect glial activation in AD26. Network analysis is a related approach65

that identifies disease modules, clusters of highly correlated proteins altered in66

disease10, 19, 27. Proteomic data has been used to identify dozens of AD modules,67

highlighting altered signaling networks, metabolic pathways, and cell states in68

AD23–25, 28.69

Although MS proteomics has been productively used to identify novel individual70

AD protein pathologies and network alterations, the approach’s full potential71

has yet to be realized in the context of AD. In particular, sample throughput,72

defined as the number of parallel samples and proteins that can be analyzed,73

remains limiting. Approaches that analyze a single sample per MS run (“label-74

free”) provide excellent quantitative accuracy and identify many proteins16, 29.75

However, AD is a highly heterogeneous disease influenced by complex genetic76

and lifestyle factors15, 30–32. Understanding the disease’s causal mechanism thus77

requires profiling large cohorts, which is impractical with label-free approaches.78

Molecular barcodes (“mass tags”) allow multiple samples to be pooled and run79

simultaneously33. However, multiplexing samples often results in fewer proteins80

identified per sample and quantification relying on isobaric mass tags is often81

adversely affected by co-isolation interference34, 35. Further, the vast majority of82

prior AD MS proteomic profiling efforts have used data-dependent acquisition,83

an approach that isolates and fragments one peptide precursor at a time. In an84

alternative framework, data-independent acquisition (DIA), all precursors within a85

specified window are analyzed, increasing throughput by parallelizing the analysis86

of peptides36, 37. Recent advances have combined mass tags with DIA to increase87

throughput in MS proteomics38, 39. The resulting experimental and computational88

framework, plexDIA, provides multiplicative gains in throughput by simultaneously89

multiplexing samples and peptides38, 39. Quantification with plexDIA is based90

on peptide-specific fragments40, so it is not affected by co-isolation interference91

that undermines the accuracy of TMT-based multiplexing approaches. However,92

plexDIA has yet be applied in the context of AD.93
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Here, we leveraged plexDIA to quantify proteins in human AD and non-AD94

brain tissue samples. We used the resulting datasets to identify individual protein95

alterations and systematic changes in proteins mapped to well-annotated biological96

processes and subcellular localizations. The largest systemic shift in our data was97

an AD-specific reduction in subunits of the 20S proteasome, the catalytic core of the98

primary protein degradation pathway in eukaryotic cells. This reduction coincided99

with reduced subunit stoichiometry both within and between the proteasome’s two100

functional modules: the 20S core particle and 19S regulatory particle. Analyzing the101

relationship between 20S levels and protein abundance revealed unique properties of102

proteins that increase AD. First, they tend to have faster degradation rates than those103

decreased in AD. Second, proteins increased in AD harbor more signals that enable104

them to be targeted for degradation by the ubiquitin-proteasome system (UPS).105

Third, a number of proteins with large increases in AD have compartment-specific106

subcellular localizations and are targeted for UPS degradation when mislocalized.107

Taken together, our results are consistent with a model in which both decreased108

ubiquitin-proteasome system capacity and aberrant protein accumulation adversely109

impact protein homeostasis in AD.110

Results111

Widespread Proteomic Changes in AD Identified using plexDIA112

We sought to leverage recent advances in multiplexed sample processing and data113

acquisition38, 41 to characterize AD proteomic changes. To do so, we acquired brain114

tissue samples from a cohort of 24 individuals from the Massachusetts Alzheimer’s115

Disease Research Center (ADRC). Tissue from Brodmann area 9 of the dorsolateral116

prefrontal cortex was used for all analyses. Hallmark AD tau pathology occurs117

primarily in non-cortical structures in Braak stage III or lower cases5, 42, 43. To118

increase our power to see AD-related proteomic changes, we therefore considered119

subjects at Braak stages 0-III “non-AD” and V and VI as “AD” (Figure 1A). We120

profiled samples using plexDIA, an approach for simultaneously analzying of121

multiple samples (via mass tags that allow sample multiplexing) and proteins (via122

data-independent acquisition)38, 39. We labeled individual samples using the non-123

isobaric (differing mass) mTRAQ labeling reagents, creating 8 batches of three124

samples each with similar distributions of age, sex, and disease stage (Figure 1A;125

Methods). To increase the specificity of sequence identification, we created a126

sample-specific spectral library using narrow isolation windows that allowed for127

high specificity mapping between precursors and their corresponding fragment128
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ions44. This allows for confident identification of peptides and their modification129

and the creation of specific spectral libraries for searching all spectra. Using a130

Thermo Exploris 480 instrument and DIA-NN41, we confidently identified and131

quantified 6,436 proteins across the set of 24 samples.132

Exploratory analyses revealed that our data accurately captured known AD biology.133

We first visualized samples using principal component analysis (PCA), which134

revealed that samples separated clearly on the basis of disease status (“AD” or135

“non-AD”) along the first principal component (Supplementary Figure 1). Samples136

did not obviously separate on the basis of other demographic or technical factors137

unrelated to disease status (Supplementary Figure 1). We then determined the138

set of differentially abundant proteins between AD and non-AD samples. To139

identify robust, consistent signals in our data, we used a significance criteria of a140

q value less than 0.05 and an absolute fold change greater than 1.5. In total, 281141

proteins met these criteria. (Figure 1B). The set of differentially abundant proteins142

included many proteins with known roles in AD, such as increased APOE18, 21, 45
143

and the inflammation-related complement C4A18, 21, 46, as well as decreased levels144

of cytoskeletal proteins18, 21, 47 (MAP4 and tubulin beta-4B chain) and mitogen-145

activated protein kinase kinase 5 (MAP2K5) (Figure 1B). The largest absolute146

fold change was the significant decrease in the cAMP phosphodiesterase PDE4A,147

a change previously captured in large-scale studies of AD-associated proteomic148

changes18, 21 and a potential AD therapeutic target48.149

AD is associated with widespread alterations in multiple cellular organelles, com-150

partments, and complexes, including the neuronal cytoskeleton47, 49, the endolyso-151

somal system11, 50, and the endoplasmic reticulum (ER)51, 52. Although changes152

in selected individual proteins have been well-characterized53–55, a comprehen-153

sive compartment-specific census of AD-linked proteomic changes has not been154

achieved. To this end, we applied a recently-described approach for identifying155

shifts in specific cellular organelles, compartments, and complexes from bulk pro-156

teomics data56. The approach searches for systematic shifts in the fold change of157

proteins annotated to specific cellular compartments. To assess the approach in158

the context of AD, we first tested whether proteins annotated to the cytoskeleton159

exhibited consistent shifts between AD and non-AD samples. As expected, we160

observed a large, statistically significant (Wilcoxon q = 2.2e-4) shift, such that161

levels of cytoskeletal proteins were consistently lower in AD (Figure 1C).162
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We obtained similar results for microtubule proteins (Wilcoxon q = 1.5e-4).163
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Figure 1: Study overview and AD proteomic changes. A. Schematic of the cohort and proteomic profiling
approach. B. Volcano plot of proteins exhibiting differential abundance (q value less than 0.05 and an
absolute fold change greater than 1.5) between AD and non-AD samples. C. Compartment-specific shifts
were scaled and plotted to visualize the largest shifts between AD and non-AD, revealing that the shift in
proteasome 20S subunit proteins was the largest negative shift between AD and non-AD samples. D. / E.
Rank order plots showing relative fold change ranks of 20S (D.) and 19S (E.) proteasome subunits between
AD and non-AD samples.

Having established the approach’s ability to capture known AD compartment-164

specific proteomic changes, we next applied it across the set of Gene Ontology57, 58
165

Cellular Component terms. The largest AD-associated shift was the decrease in166
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proteasome 20S core particle subunits (Wilcoxon q = 1e-3; Figure 1C / D), consis-167

tent with the reduced proteasomal capacity recently observed in other human AD168

samples59–61. The 20S is the degradative core of the 26S proteasome, the primary169

protein degradation pathway in eukaryotic organisms62–64. The canonical configu-170

ration of the proteasome, the 26S form, consists of a single 20S core particle doubly171

capped with 19S regulatory particles. In this configuration, the 19S regulatory binds172

ubiquitinated substrates and processively unfolds and translocates them to the 20S173

core, where substrates are degraded to short peptides63–66. Emerging evidence also174

suggests that free 20S core particles are abundant within cells and exhibit distinct175

substrate preferences as compared to 26S proteasomes67–69. Thus, the shift in 20S176

core particles in AD may reflect decreased degradative capacity in AD-afflicted177

cells, further compounding proteostatic challenges induced by AD protein pathol-178

ogy68, 70, 71. We applied the same analysis to the 19S regulatory particle. Although179

selected subunits exhibited a leftward shift, the overall change was non-significant180

(Wilcoxon p = 0.75; Figure 1C / E).181

To put these results in context, we scaled all compartment-specific fold change182

shifts relative to that observed for microtubules, a large, significant change that183

reflects known AD biology. Doing so revealed multiple compartment-specific shifts.184

Some shifts likely reflect neuronal loss in AD, such as decreases in synaptic (q =185

0.01) and vesicle-associated proteins (q = 4.6e-7). Others likely reflect impaired186

proteostasis within AD-afflicted cells, such as increased levels of ER proteins (q187

= 0.02; Figure 2C). The largest increase for AD was observed for ER ubiquitin188

ligases (Figure 2C), however this term did not reach statistical significance, likely189

owing to the small number of associated proteins detected in our study (6). Taken190

together, our results reveal proteomic changes across a diverse range of organelles,191

compartments, and complexes in AD.192

Reduced Proteasome Subunit Stoichiometry in AD193

The 20S proteasome consists of a barrel-shaped arrangement of stacked α and β194

subunits arranged as heteroheptameric rings72–74. Consistent with these structural195

requirements, the production rate of 20S subunits is generally highly similar be-196

tween subunits75 and the abundance of individual subunits is highly correlated76, 77.197

In contrast, the 19S regulatory particle can exist in multiple configurations and198

multiple subunits are often produced in stoichiometric excess78–81. To understand199

if the shift in 20S core particle abundance reflects a reduced stoichiometry among200
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19S and 20S complexes, we computed correlations within and between individual201

proteasome subunits of the 19S regulatory particle and 20S core particle. As ex-202

pected, the correlation among 20S core particles subunits was large and positive.203

However, AD samples showed significantly reduced correlations among all 20S204

subunits (Wilcoxon p = 0.021; Figure 2).205
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Figure 2: Proteasome subunit stoichiometries in non-AD and AD samples. Correlations between the
abundance of individual proteasome subunits were visualized as a heatmap for non-AD and AD samples. A. /
B. non-AD samples (A.) showed significantly higher correlations among components of the 19S regulatory
particle and 20S core particle as compared to AD samples (B.).

An even more marked reduction in subunit correlations was observed for the 19S206

regulatory particle in AD cases (Wilcoxon p = 3e-17; Figure 2). Together, these207

results reveal a widespread decoupling of the abundances of the subunits of the208

proteasome that may result from or further exacerbate defects in protein quality209

control pathways in AD11, 59–61, 71.210

Multiple AD-relevant Protein Sets are Correlated with 20S Levels211

To better understand the relationship between proteasome levels and protein abun-212

dance, we correlated levels of individual proteasome subunits with all other proteins213

across our 24 samples. Owing to their highly similar abundances, protein correla-214

tions were consistent among 20S subunits (Figure 3A). We observed three distinct215

bands, one with mostly positive, one with mostly negative, and one with low overall216

correlation to 20S levels (Figure 3A, left to right). In contrast, proteome-wide cor-217

relations to 19S regulatory particle levels displayed two distinct clusters and much218

lower overall consistency among subunits (Figure 3B). We reasoned that we could219

use the median of 20S correlations to individual proteins to identify categories220
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of proteins well-correlated to 20S levels. Multiple proteins with known roles in221

AD positively correlated to 20S levels. HSPE1 is a chaperone protein involved222

in the mitochondrial unfolded protein response82 and also implicated in AD83.223

Consistent with their roles in protein quality control, HSPE1 and 20S levels were224

significantly positively correlated (r = 0.67, q = 0.03). Variation in the NTM gene225

encoding neurotrimin, a neural cell adhesion molecule, modulates tau pathology226

levels in AD84. Neurotrimin levels were positively correlated with 20S levels (r =227

0.74, q = 0.014). Calsystenin-1 (CLSTN1) is involved in axonal transport of amy-228

loid beta and the protein is reduced in the brains of AD patients85. Calsystenin-1229

levels were positively correlated with 20S levels (r = 0.64, q = 0.046). Reduced230

calsystenin-1 is known to trigger amyloid beta accumulation85, a phenomenon that231

likely exacerbates proteotoxic stress resulting from decreased proteasome capacity232

in AD.233

Proteins negatively correlated to 20S levels are of particular interest, since they234

likely include proteasome substrates. Correlation analysis alone cannot determine235

whether a protein rises to increased abundance due to reduced proteasome levels or236

activity. However, analyzing correlations and additional properties, such as degra-237

dation rate, number of degradation-targeting signals (“degrons”86), and subcellular238

localization can be used to generate testable hypotheses about protein homeostasis239

in AD. Ribosomal proteins accumulate in protein aggregates in the aging brain240

due to impaired clearance mechanisms, including reduced proteasome activity87.241

Consistent with this observation, we observed significant negative correlations242

between 20S levels and the ribosomal subunits RPS2 and RPL11 (r = -0.71, -0.66,243

q = 0.016 and 0.041, respectively). Excess synaptojanin 1 (a phosphoinositide244

phosphatase) contributes to synaptic defects in AD88. We observed a significant245

negative correlation of the protein to 20S levels (r = -0.8, q = 0.01). Aberrant in-246

creases in dynamin 1-like protein lead to mitochondrial defects and the protein has247

previously been implicated in AD89. We observed a significant negative correlation248

to 20S levels (r = -0.69, q = 0.02). Together, these analyses reveal multiple proteins249

with known connections to AD and strong correlations to 20S levels.250
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Figure 3: Proteome-wide correlations to 20S levels. A. Proteome-wide correlations to 20S proteasome core
particle subunit levels. B. Proteome-wide correlations to 19S proteasome regulatory particle levels. C. – E.
Levels of all proteins were correlated to 20S subunit median abundance and protein set enrichment analysis
was run on the resulting set of correlations. Plots display significantly enriched (q ≤ 0.05) Gene Ontology
Biological Process (C.), Molecular Function (D.), and Cellular Compartment (E.) terms. Black lines show
individual proteins with the correlation magnitude displayed on the y axis. Red lines show the median for all
proteins mapping to the indicated term. The full set of 20S correlations is shown for reference at the bottom of
each plot in C - E. F. Proteins from the “ATP dependent protein folding chaperone” GO term were stratified
by chaperone type and each protein’s correlation to 20S levels was visualized. As shown, proteins of the
chaperonin containing TCP-1 (CCT) complex were significantly more negatively correlated to 20S levels than
HSP chaperones. G. Proteins from the GO “Nucleocytoplasmic carrier activity” term were stratified by their
direction of transport. There were no significant differences in 20S correlations between transporter types.

To provide a compartment- and function-specific view of proteomic correlations to251

20S levels, we performed protein set enrichment analysis using the set of Gene On-252

tology (GO)57, 58 Cellular Component, Biological Process, and Molecular Function253

terms. We identified 17 terms across the three domains at a 5% false discovery rate254

(FDR; Figure 3C-E). Overall, 9 of the 17 significant terms were driven by negative255

protein correlations to 20S levels. Protein localization to subcellular compartments256

or multi-protein complexes was a theme across the set of proteins negatively corre-257

lated to 20S levels, reflected at a high level in the significant enrichment for the GO258

Cellular Compartment term “Organelle subcompartment” (q = 0.022; Figure 3B).259
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Specific compartments reflecting this enrichment included “Golgi vesicle mem-260

brane” (q = 0.034), “ER membrane network” (q = 0.037), “Nucleocytoplasmic261

carrier activity” (q = 0.028), and “translation regulator activity” (q = 0.048).262

The main theme amongst enriched terms resulting from positive correlations to 20S263

levels was NADP metabolism. This was reflected in significant enrichments in the264

GO Biological Process terms “Pyridine containing compound metabolism” (q =265

0.041) and “NADP metabolic process” (q = 0.015), as well as the molecular func-266

tion terms “Oxidoreductase activity” (q = 0.048) and “NADP binding” (q = 0.018).267

There are no obvious functional or structural links between proteins from these268

terms and the proteasome. However, the significant positive correlation among269

these proteins may reflect similar energetic demands of ATP-dependent proteasomal270

protein degradation and NADP-dependent biosynthetic reactions. Thus, the ob-271

served positive correlations may reflect energetic imbalances, a well-characterized272

hallmark of AD90–93.273

We next examined the set of proteins contained within selected significantly en-274

riched terms. ATP-dependent folding chaperone proteins were negatively correlated275

with 20S levels and are elevated in AD, where they may mitigate proteotoxic stress276

and protein aggregation94, 95. The chaperones contained in the “ATP-dependent277

folding chaperone” term comprise three main categories: those of the Chaperonin278

Containing TCP-1 (CCT) complex, heat shock proteins (HSPs), and other non-CCT279

/ non-HSP chaperones. We stratified the set of proteins in our data based on these280

categories to determine whether a specific class was more strongly associated with281

20S levels. CCT proteins were significantly more negatively correlated to 20S282

levels than HSP proteins (t-test p = 5e-3; Figure 3F). No other differences were283

observed among chaperone categories (t-test p > 0.05; Figure 3F). CCT members284

bind and potently inhibit tau aggregation96, providing a potential explanation for285

their robust induction in response to decreased 20S levels.286

Nucleocytoplasmic transport defects have previously been described in AD and287

individual nuclear pore complex subunits accumulate in AD-afflicted neurons97.288

Similarly, we observed that nucleocytoplasmic transport proteins were significantly289

negatively correlated to 20S levels. The set of proteins contained in the GO290

“Nucleocytoplasmic carrier activity” term comprise proteins that facilitate nuclear291

import, nuclear export, or bi-directional transport of proteins between the nucleus292

and cytoplasm. We stratified proteins based on these categories to understand if a293
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particular transport direction was more strongly associated with 20S levels. None294

of categories differed significantly in their correlation to 20S levels (ANOVA p =295

0.16; Figure 3G).296

Increased Mitochondrial Ribosome Subunits Suggest Quality Control Defects297

in AD298

To better understand our observation that many proteins targeted to specific or-299

ganelles, subcellular compartments, or multi-protein complexes were inversely300

correlated with 20S levels, we examined proteins in our dataset that are known301

20S substrates. 20S proteasomes are known to be highly abundant within cells302

and capable of directly degrading substrates without ubiquitination62, 67, 68, 98. 20S303

proteasomes target distinct sets of substrates from 26S proteasomes. In particular,304

20S proteasomes exhibit a high affinity for proteins with intrinsically disordered305

regions, presumably because 20S proteasomes lack the 19S regulatory particle’s306

unfolding capabilities67, 69, 99.307

We identified 20S substrates in our data using previously-published datasets69, 100.308

Examining the log2 fold change (AD / non-AD) of 20S substrates revealed that 20S309

substrates were twice as likely to be increased versus decreased in AD (Figure 4A).310

Among the set of significantly increased 20S substrates, MRPL54, a subunit of311

the mitochondrial ribosome large subunit, was a clear outlier, both in terms of312

absolute fold-change magnitude and q value (Figure 4A). Another mitochondrial313

20S substrate, frataxin, was also significantly increased in AD (Figure 4A). PDCD4,314

a translational inhibitor101, was also significantly increased in AD. PDCD4 has long315

been known to be upregulated in AD102, but the mechanism by which this occurs316

is unknown. Our results raise the possibility that PDCD4 levels are increased, in317

part, as a result of decreased 20S proteasome levels. NUFIP2 is an intrinsically318

disordered RNA-binding protein that associates with cytoplasmic stress granules319

and shuttles between the nucleus and cytoplasm103. NUFIP2’s interaction with320

TDP-43 drives TDP-43 mis-localization and aggregation in a frontotemporal lobar321

degeneration (FTLD) model system104. The significantly increased levels of NU-322

FIP2 we observe may similarly contribute to TDP-43 dysfunction in AD through a323

failure of 20S proteasomes to degrade NUFIP2.324

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2025. ; https://doi.org/10.1101/2025.05.29.656728doi: bioRxiv preprint 

https://doi.org/10.1101/2025.05.29.656728
http://creativecommons.org/licenses/by-nc-nd/4.0/


Log2 Fold Change (AD / non-AD)

-L
o

g
1

0
q

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-1.0 -0.5 0.0 0.5 1.0 1.5

PDCD4

q < 0.1, |FC| > 1.5 (n = 6)

All Other 20S Substrates (n = 48)

MRPL54

NUFIP2

FXN

NUP35

POLR2I

A C

Log2 Fold Change (AD / non-AD)

k
a

0.0

0.2

0.4

0.6

0.8

1.0

-0.5 0.0 0.5 1.0 1.5

r = 0.35, p = 0.04

q < 0.05, |FC| > 1.5 (n = 2)

Other MT Ribosome Proteins (n = 33)

(h
o

u
rs

-1
)

MRPL54

D

MRPS35

Log2 Fold Change (AD / non-AD)

k
a

b

0.0

0.2

0.4

0.6

-0.5 0.0 0.5 1.0 1.5

r = -0.034, p = 0.85

q < 0.05, |FC| > 1.5 (n = 2)

Other MT Ribosome Proteins (n = 33)

MRPL54

MRPS35

(h
o

u
rs

-1
)

 - pre-assembly degradation  - complex assemblyE

Log2 Fold Change (AD / non-AD)

0.005

0.010

0.015

-0.5 0.0 0.5 1.0 1.5

r = 0.34, p = 0.049

q < 0.05, |FC| > 1.5 (n = 2)

Other MT Ribosome Proteins (n = 33)

Log2 Fold Change (AD / non-AD)

C
o

rr
e

la
ti
o

n
 t
o

 2
0

S
 L

e
v
e

ls

-0.5

0.0

0.5

-0.5 0.0 0.5 1.0 1.5

r = -0.69, p = 6.8e-11

MT Ribosome 20S Substrates (n = 8)
Other MT Ribosome Proteins (n = 27)

Mitochondrial Ribosome
Subunit Synthesis

Complex Assembly

post-Assembly
Degradation

pre-Assembly
Degradation

Ka

Kab

Kb

Ka Kab

k
b

(h
o

u
rs

-1
)

 - post-assembly degradationKb

MRPL54

MRPS35

B

F

Figure 4: AD-associated changes in 20S substrates. A. Volcano plot of log2 fold change versus q for 20S
substrates. 20S substrates are more often increased in AD. B. 20S correlation and log2 fold change are
strongly negatively correlated, both among 20S substrates and all detected mitochondrial ribosome proteins.
C. Two-step pathway of mitochondrial ribosome assembly. Based on previously-published results105. D.-F.
Correlation of rate constants measuring pre-assembly degradation rate (ka, D.), complex assembly (kab,
E.), and post-assembly degradation (kb, F.). Mitochondrial ribosomal protein abundance is significantly
correlated with both degradation rates, but not complex assembly. Note that the pre-assembly degradation
rates are much higher than post-assembly (compare y-axis in D. / E.)

Based on the large and significant increase in MRPL54, we further examined the325

set of mitochondrial ribosome proteins in our data. Doing so revealed a highly326

significant relationship between the correlation of mitochondrial ribosome subunits327

to 20S levels and their fold change in AD (Figure 4B). Mitochondrial ribosomes are328

assembled through a multi-step process that requires translocating subunits encoded329

by the nuclear genome into mitochondria and assembling them into functional330

ribosomes through a series of assembly intermediates105–107. Select individual331

subunits are produced in stoichiometric excess105, 106 and degraded with kinetics332

similar to those observed for other protein complexes (Figure 4C)108. Specifically,333

free subunits are rapidly degraded unless they are incorporated into functional334

mitochondrial ribosomes. The turnover of these subunits is thus reflected by three335
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parameters, ka - the turnover of free subunits, kab - the rate of complex formation,336

and kb - the turnover of subunits within mitochondrial ribosomes. In general,337

proteins within complexes are more stable than free subunits108 and, consequently,338

ka values are generally much higher than kb.339

Analyzing the relationship between subunit turnover and abundance in AD revealed340

a previously-unappreciated relationship. Specifically, the log2 fold change (AD341

/ non-AD) of individual mitochondrial ribosome subunits was significantly and342

positively correlated with the degradation rate constants ka and kb, but not the343

rate of complex formation, kab (Figure 4D-F). That is, proteins that are rapidly344

degraded tended to be elevated in AD, consistent with a model in which defects in345

protein quality control pathways contribute to the accumulation of mis-localized,346

dissociated subunits of protein complexes. Notably, MRPL54, the subunit with the347

largest increase in AD (and among the largest increases across all proteins), has the348

most rapid degradation rates of both the free subunit and in complex (Figure 4D,349

F). Prior proteomic profiling studies have identified increases in individual mito-350

chondrial ribosome subunits18, 19, 21 but neither they nor our study have observed351

systematic shifts in mitochondrial ribosomes. Our results suggest that this is, in352

part, because subunits that would normally rapidly be turned over preferentially353

accumulate, while those with slower turnover are less affected. More generally,354

they are consistent with a model in which proteins that are normally rapidly turned355

over when they mis-localize or fail to assemble into a protein complex rise to high356

abundance in AD.357

UPS Substrates are Increased in AD358

Proteasome abundance is regulated according to the proteostatic needs of the359

cell109, 110 and imbalanced proteasome subunit stoichiometry may further exacerbate360

AD-linked proteostasis defects111. We observed that 20S core particle abundance361

is decreased and both 19S and 20S subunits show reduced stoichiometry in AD.362

These observations raise the possibility that some proteins that would otherwise be363

targeted and degraded by the ubiquitin-proteasome system (UPS) are not efficiently364

removed from cells. To systematically investigate this possibility, we examined365

the properties of the set of differentially abundant proteins between AD and non-366

AD samples. We first examined the degradation rates of differentially abundant367

proteins. We reasoned that proteins exhibiting increased abundance owing to368

aberrantly diminished UPS activity would show large AD / non-AD fold changes369
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and rapid degradation rates. Using a recently published dataset that measured370

degradation rates in mouse brain tissue112, we plotted the degradation rate and fold371

change, separating proteins based on fold change direction (Figure A). Among372

proteins increased in AD, we observed a significant positive correlation (r = 0.24,373

p = 0.024) (Figure A). This trend was more evident when the data were binned by374

log2 fold change, with a clear increase in degradation rate observed for proteins375

with a fold change greater than 1.5 (Figure B). In contrast, there was no relationship376

between degradation rate and log2 fold change for proteins that were decreased377

in AD (Figure A / B). These differences led us to explore relationships among378

differentially abundant proteins and properties of UPS substrates.379

Intrinsically disordered regions can facilitate the degradation of cellular proteins,380

potentially by acting as unstructured initiation regions for degradation66, 113, 114 or381

encoding ubiquitin system or proteasome recognition motifs115, 116. We therefore382

explored whether proteins increased or decreased in AD differed significantly in383

the fraction of disordered residues in their N- and C-termini. We defined the N-384

and C-termini of proteins as the first or last 100 amino acids, respectively and used385

DISOPRED for disorder predictions117. At the N-terminus, differentially abundant386

proteins between AD and non-AD had similar fractions of disordered residues387

(Wilcoxon p = 0.18; Figure C). At the C-terminus, however, proteins decreased388

in AD had a significantly greater fraction of disordered residues, contrary to our389

hypothesis (Wilcoxon p = 0.01; Figure C).390

We next assessed whether differentially abundant proteins differed in the number of391

signal sequences that allow them to be targeted for UPS degradation. The canonical392

pathway for UPS protein degradation involves E3 ubiquitin ligases binding degrons,393

then ubiquitinating substrate proteins86. Poly-ubiquitinated proteins are then bound394

and degraded by the proteasome. We searched for degrons among our differen-395

tially abundant proteins using a curated database containing thousands of human396

protein degron sequences115, 118–123. We note that this database does not include397

modification-dependent degrons, such as the recognition of phosphorylated tau by398

CHIP-HSC70124. Despite similar overall lengths (Wilcoxon p = 0.42), proteins399

increased in AD harbored significantly more UPS degrons (Wilcoxon p = 4.2e-08;400

Figure D / E). These results provide further evidence that proteins that would401

normally be targeted for degradation by the UPS accumulate in AD.402

Specific E3 ligases often target distinct classes of proteins. We next assessed403
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whether degrons specific to individual E3 ligases were enriched in the set of differ-404

entially abundant proteins we identified. To do so, we computed the log2 ratio of405

proteins of increased abundance versus decreased abundance for degrons bound406

by individual E3 ligases. The results showed a clear and significant enrichment of407

BAG6 motifs among proteins of increased abundance. BAG6 is a chaperone protein408

that functions in complex with the E3 ligase RNF126, GET4, and UBL4A125–127.409

The BAG6 complex specifically identifies mis-localized proteins within the cyto-410

plasm and participates in endoplasmic reticulum-associated degradation125, 127, 128.411

Increased abundance of proteins with BAG6 motifs in AD may therefore result412

from inadequate protein quality control-based targeting and degradation.413

We examined the set of proteins of increased abundance that also contained BAG6414

motifs to identify those that may accumulate due to impaired quality control415

mechanisms. One of the largest fold-change increases was seen for TMEM94,416

an ER-resident transport protein. TMEM94 contains two BAG6 motifs in its417

cytoplasmic-facing N-terminus (Figure G). To determine whether these motifs418

could influence TMEM94 degradation, we examined a recent proteome-wide419

degron identification dataset121. As compared to other peptides in the TMEM94420

N-terminus, the BAG6 motif peptides were strongly destabilizing, suggesting they421

are authentic BAG6 degrons (Figure H).422

The BAG6 complex functions through the association of BAG6, RNF126, GET4,423

and UBL4127–129 (Figure I). To understand whether imbalances in the subunits424

of the complex might also contribute to increases TMEM94 levels in AD, we425

measured the correlation of individual subunits of the BAG6 complex. In non-AD426

samples, we observed significant positive correlations among individual BAG6427

complex members. In contrast, in AD, the correlation among BAG6 subunits was428

reduced and, for some members, negative. Together, our results reveal a large429

increase in TMEM94 in AD that may result from the combination of proteasome430

dysregulation, as well as reduced stoichiometry of the BAG6 complex that likely431

targets mislocalized TMEM94 for proteasomal degradation through TMEM94’s432

N-terminal degrons.433
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Figure 5: Properties of differentially abundant proteins between AD and non-AD samples. A. The log2 fold
change versus degradation rate was visualized for all differentially abundant proteins stratified by the fold
change direction. B. Binning proteins by fold change revealed a subset of proteins that had large increases in
AD and high degradation rates (rightmost box). C. Proteins of increased versus decreased abundance do
not differ in the fraction of N-terminal disordered residues. Proteins decreased in AD have a significantly
higher fraction of disordered C-terminal residues. Termini were defined as the first (N-terminus) or last
(C-terminus) 100 amino acids of a protein. D. Proteins of increased versus decreased abundance in AD
have similar lengths. E. Proteins of increased abundance have significantly more degron-containing peptide
sequences than those decreased in AD. F. The log2 ratio of the number of degron motifs in proteins of
increased vs. decreased in abundance was stratified by E3 ligase. The largest and most significant difference
was the enrichment of Bag6 degrons in proteins increased in AD (top row). G. The structure of TMEM94, a
protein significantly increased in AD samples, is shown with its cytosol-facing N-terminus and Bag6 degron
recognition motifs highlighted. H. The degron strength of peptides from the TMEM94 N-terminus were
Z-transformed such that more potent degrons have higher values. Data are from a prior study121. I. Model
depicting substrate recognition and processing the components of the Bag6 ubiquitin ligase complex. J.
Correlations among the relative abundance of Bag6 complex subunits were plotted, revealing a significant
decrease in subunit stoichiometry in AD samples.

Complex Alterations to Ubiquitin System Enzymes in AD434

Our results and those of others59–61, 130 suggest that decreased proteasome levels435

contribute to protein dyshomeostasis in AD. Prior to proteasomal degradation,436

many proteins must be ubiquitinated by ubiquitin system enzymes. To understand437

if ubiquitin system enzymes also contribute to disease proteopathic burden, we438

investigated their how their levels vary in AD. The ubiquitin system comprises E1439

ubiquitin activating enzymes, E2 ubiquitin conjugating enzymes, and E3 ubiquitin440

ligases. The human genome encodes 2 known E1s, approximately 20 E2s, and ap-441

proximately 600 E3 ligases131–133, the latter of which target proteins with distinct de-442

grons, structures, functions, activity states, and subcellular localizations63, 65, 132, 134.443

Some E3 ligases primarily regulate physiological protein abundance, while others444

contribute to protein quality control by targeting misfolded, damaged, mislocalized445

proteins or unincorporated protein complex subunits63, 65, 108, 132–134.446

As expected given their large number and functional diversity, we did not identify447

systematic shifts in ubiquitin system enzymes (Supplementary Figure 2). Instead,448

they exhibited a continuous distribution of abundance differences between AD449

and non-AD samples. Of note, we did not observe altered levels of CHIP, an450

E3 ubiquitin ligase that targets tau135, in AD (q = 0.51). To identify potentially451

informative subsets of proteins, we correlated the levels of all ubiquitin system452

enzymes detected in our data. We applied hierarchical clustering to the resulting453

matrix of pairwise correlations, which identified 16 clusters of highly correlated454
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ubiquitin system enzymes (Figure 6A). To evaluate the statistical significance of455

the identified clusters, we generated an empirical null distribution by randomly456

sampling ubiquitin system enzymes and computing the intra-cluster correlation.457

We defined statistical significance as clusters that exceeded the 99% quantile of458

our empirical null distribution. Using this approach, we identified 12 significant459

clusters (Figure 6B).460
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Figure 6: Ubiquitin system enzyme alterations in AD. A. Hierarchical clustering was used to identify
highly correlated subsets of ubiquitin system enzymes. A total of 16 clusters, numbered from top left to
bottom right were identified. B. To determine the statistical significance of individual clusters, we used
bootstrap-based resampling to generate 1,000 random clusters. Clusters exceeding the 99th percentile of
the resulting empirical null distribution were considered significant. C. The discriminative ability of each
cluster was evaluated using two complementary methods, the scaled Euclidean distance between AD and
non-AD samples (x axis) and the F statistic from an ANOVA of AD versus non-AD samples. By both metrics,
clusters 3 and 13 were clear outliers. D. Normalized levels of all cluster 3 and 13 ubiquitin system enzymes
are shown, with each cluster’s mean at right.

Our approach for defining clusters is based on protein covariation across all samples461
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and therefore does not consider abundance differences between AD and non-AD.462

To determine whether individual clusters could discriminate AD from non-AD463

samples, we used two complementary statistics. We evaluated the scaled Euclidean464

distance and F statistic of an ANOVA comparing cluster levels between AD and465

non-AD samples. By both approaches, the third and thirteenth clusters, which466

contained 9 and 8 ubiquitin system enzymes, respectively, robustly separated AD467

and non-AD samples (Figure 6C). Strikingly, the two clusters exhibited divergent468

patterns, such that proteins in cluster 3 tended to show decreased abundance in AD,469

while those in cluster 13 showed increased abundance (Figure 6D).470

Inspection of individual cluster 3 and 13 revealed multiple proteins with known471

or putative roles in AD. CUL5, a Cullin-RING E3 ligase, was decreased in AD472

(Figure 6D). The protein was recently discovered to bind and ubiquitinate tau and473

genetic perturbations that decrease CUL5 levels increase tau oligomer accumulation474

in AD models136. TRIM2 is a RING finger E3 ligase that binds and regulates the475

levels of neurofilament proteins137. TRIM2 is highly expressed in the central476

nervous system (CNS) and ablating TRIM2 expression leads to neurodegeneration477

in mice137. BRAP (BRCA1-associated protein) is also highly expressed in the CNS478

and reducing its levels results in aberrant histone ubiquitination patterns, as well479

as neurodegeneration138 in mice. We identified multiple E2 ubiquitin conjugating480

enzymes in cluster 3, including UBE2M, UBE2K, and UBE2G2 (Figure 6D).481

Decreased levels of selected E2s have previously been observed in AD139, 140.482

Notably, both UBE2M and UBE2K are implicated in protein quality control via483

ERAD141, 142, suggesting that the AD-associated decreases we observe in these484

proteins may further contribute to loss of protein homeostasis in AD.485

Proteins in cluster 13 showed increased abundance in AD samples. TRAF6, an E3486

ligase that regulates the levels of signaling proteins, has previously been shown487

to increase in AD139. Cluster 13 contained multiple RING finger E3 ligases, in-488

cluding RNF123, RNF213, and RNF214. Several other RING finger E3 ligases489

are elevated in human AD143–145 and our results identify additional examples of490

disease-associated increases in this class of E3s. ARIH1, an E3 ligase with roles in491

neuronal development, ubiquitinates multiple proteins with functional relevance492

to AD. In particular, ARIH1 modulates both microtubule stability and neurotrans-493

mitter release via its substrate targets146, 147, suggesting that altered levels of the494

protein in AD may exacerbate cytoskeletal and synaptic abnormalities.495
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Discussion496

The full extent of protein dysfunctions in AD and the mechanisms that give rise to497

them have not been fully characterized. We used a recently-developed approach498

that provides deep proteomic coverage, highly accurate quantitation, and sample499

multiplexing capability38, 39 to measure the levels of approximately 6,400 proteins500

in a set of 24 AD and non-AD brain tissue samples. We identified hundreds of501

differentially abundant proteins, including many with no previously-described502

role in AD, that show large increases in AD samples. We also highlight multiple503

mechanisms that may directly or indirectly contribute to impaired protein quality504

control in AD. Our analysis of protein quality control pathways and their substrates505

in AD reveals general principles by which proteins may aberrantly accumulate in506

AD-afflicted cells and exacerbate disease-linked proteotoxic stress71, 148–151.507

The largest systematic change we observed in our data was a decrease in levels508

of 20S proteasome subunits. This result mirrors recently described-decreases in509

proteasome abundance and activity in AD59–61, 130. The mechanisms that cause510

these decreases are not known, though multiple factors, including the accumulation511

of insoluble tau152, sequestration of the Nrf2 transcription factor that normally acti-512

vates proteasome genes59, post-translational modifications of individual proteasome513

subunits153, and mitochondrial defects92, 136, 151 may all contribute.514

Unlike 20S core particle subunits, 19S regulatory particle subunits were not sys-515

tematically decreased in AD. Such a scenario could result from a decreased ratio516

of 20S to 26S proteasomes or imbalances in the production and assembly of 26S517

proteasomes. 20S proteasomes exhibit distinct substrate preferences67, 69, 99, 100, in518

particular, targeting intrinsically disordered proteins. Multiple intrinsically disor-519

dered proteins form pathological protein aggregates in AD70, 149, 154, 155, which are520

typically extensively ubiquitinated. Thus, a reduction in 20S proteasomes may521

impair the normal physiological clearance of these molecules, which may then be522

sequestered in aggregates as a form of molecular triage70, 95, 156. This phenomenon523

may be relevant to tau pathology in AD. Tau contains multiple intrisically disor-524

dered regions157 and in vitro, the protein is degraded by the 20S proteasome without525

ubiquitination157–159. However, phosphorylation of tau inhibits its degradation by526

20S proteasomes. Thus, in AD, tau hyperphosphorylation and reduced 20S levels527

may result in impaired clearance that synergistically accelerates the accumulation528

of insoluble, aggregated tau. Tau in AD is also extensively ubiquitinated135, 160, 161,529
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highlighting that multiple UPS pathways may target the protein for clearance in530

AD.531

Decreased 20S subunits and unchanged 19S levels could also reflect aberrant sub-532

unit synthesis and impaired assembly, leading to the accumulation of 19S subunits.533

We observed a striking reduction in subunit stoichiometries of 20S, but especially534

19S subunits, consistent with this notion. Prior proteomic profiling studies have535

described changes in proteasome subunits in AD18, 19, 22, 162. Such studies typically536

find, similar to our results for 19S, increased levels of some subunits and decreased537

levels of others. Thus, aberrant proteasome subunit stoichiometry appears to be a538

consistent feature of AD. Proteasome assembly is a multi-step, highly regulated539

process that proceeds through multiple assembly intermediates with the aid of540

molecular chaperones79, 81, 163. Some proteasome subunits are produced in excess541

and unincorporated subunits are degraded through dedicated quality control path-542

ways79, 81, 108, 163. Aging, a key AD risk factor32, is associated with both decreased543

proteasome activity and stoichiometry among proteasome complex subunits, both544

of which likely contribute to the results observed here76. Our understanding of545

proteasome assembly’s role in aging and disease is less well-established. Although546

age-related defects in proteasome assembly have been described in multiple model547

systems164, 165, the topic remains relatively unexplored in the context of human548

aging and AD.549

Decreased 20S levels in AD led us to explore whether proteasome substrates550

accumulate in disease. We started by correlating individual proteins to 20S levels.551

Protein set enrichment analysis revealed multiple biological processes and cellular552

compartments among the set of proteins negatively correlated to 20S levels. A553

key theme among these terms was protein localization to a specific subcellular554

compartment or protein complex. This led us to explore 20S substrates exhibiting555

increased abundance in AD. Among these was MRPL54 which, as a component of556

the mitochondrial ribosome, is both specifically localized and a protein complex557

subunit. MRPL54 exhibited one of the largest fold increases in AD of all proteins558

we profiled, as well as a fast degradation rate105. Analysis of proteins from the559

mitochondrial ribosome complex revealed significant associations between subunit560

degradation rates and fold changes in AD, such that subunits that are normally561

rapidly turned over accumulate in AD. Many mitochondrial proteins are encoded in562

the nuclear genome82, 105, 106. They must therefore be imported into mitochondria.563
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When the synthesis of mitochondrial proteins exceeds the translocation capacity of564

mitochondria, the UPS targets and degrades cytosolic mitochondrial proteins166.565

The set of 20S substrates includes mitochondrial ribosome proteins69, 100, suggesting566

that decreased proteasome levels could lead to the accumulation of unincorporated567

subunits. More generally, our results suggest that the combination of turnover568

rate and subcellular localization may have utility for predicting aberrant protein569

accumulation in AD. In this regard, precise, proteome-wide measurements of570

protein turnover rates105, 112 in AD model systems, such as induced pluripotent stem571

cells, would be a valuable resource.572

To extend these results, we examined the properties of differentially abundant pro-573

teins in AD. Our results revealed key features of proteins that increase in abundance574

in AD. First, we observed a significant positive association between a protein’s575

turnover rate and its abundance in AD for proteins of increased, but not decreased576

abundance. This correlation was modest (r = 0.24), an expected result given that577

proteins may rise to increased abundance in AD through multiple mechanisms.578

For example, we identified increased levels of complement C4A in AD, consistent579

with prior studies18, 21, 46. This increase is likely driven by inflammation in AD167,580

rather than failure to properly degrade the protein. Nevertheless, we identified581

a significant enrichment of UPS degrons within proteins increased in AD. The582

most significant enrichment was a motif commonly found in mislocalized proteins583

that is bound by the BAG6 complex127. BAG6 targets mislocalized proteins, as584

well as aggregation prone proteins and protein fragments125–128. Among BAG6585

degron-containing proteins, the largest increase was for TMEM94, an ER resident586

protein. Using data from a prior large-scale screening effort121, we determined587

that the cytosolic N-terminus of TMEM94 contains two likely authentic BAG6588

degrons. TMEM94 may thus rise to increased abundance in AD both as a result of589

mislocalization and decreased levels and stoichiometries of the BAG6 complex, a590

phenomenon we also observed in AD.591

We also examined how levels of ubiquitin system enzymes change in AD. The592

ubiquitin system comprises hundreds of enzymes and we used hierarchical cluster-593

ing to identify informative subsets. The levels of proteins in two clusters robustly594

discriminated AD from non-AD samples. Cluster 3, which contained proteins that595

were decreased in AD, contained Cul5. Cul5 was recently shown to ubiquitinate596

tau136 and the decrease in Cul5 we observe may further exacerbate tau dysfunc-597
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tion in AD. More generally, proteasome activation has long been considered a598

promising therapeutic target for AD168–170. However, our results make clear that599

therapeutic approaches targeting proteostasis should also consider alterations in600

ubiquitin system targeting of substrates.601

Using plexDIA38, 39, we quantified approximately 6,400 proteins across our 24602

samples. The proteomic depth of our dataset was limited by the relatively slow603

scanning speed of the MS instrument used and can increase significantly by using604

faster instruments, such as timsTOF Ultra and Orbitrap Astral. The throughput605

was only 3-fold higher compared to label-free approaches since we used mTRAQ606

tags, which enables the simultaneous multiplexing of up to 3 samples. In principle,607

however, the plexDIA framework can accommodate higher plexes. Mass tags,608

such as the recently-developed PSMtag that can support a 9-plex, can substantially609

expand throughput when combined with appropriate software171, 172. Multiplica-610

tive gains can be achieved by combining tags with recently-developed orthogonal611

multiplexing approaches173. This will support scaling the analysis to larger co-612

horts. Furthermore, single-cell proteomic technologies are poised to significantly613

increase the resolution and power of the analyses performed here174. Given AD’s614

considerable pathological heterogeneity and complex genetic and environmental615

risk factors15, 30–32, the ability to profile single cells and larger cohorts would also616

be of great value.617

Our results reveal previously-unappreciated aspects of UPS dysfunction in AD.618

We identify decreased levels of 20S proteasome subunits as the largest and most619

consistent proteomic change among cellular compartments in our data. Using620

protein correlations to 20S levels and publicly-available datasets, we reveal key621

principles of UPS substrates that increase in AD. Namely, they are rapidly turned622

over, they have compartment-specific subcellular localizations, they include protein623

complex subunits, and they are normally cleared by quality control pathways when624

mislocalized. Our results thus provide new insights into protein dysfunctions in625

AD and the mechanisms that give rise to them.626

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2025. ; https://doi.org/10.1101/2025.05.29.656728doi: bioRxiv preprint 

https://doi.org/10.1101/2025.05.29.656728
http://creativecommons.org/licenses/by-nc-nd/4.0/


Materials and Methods627

Cohort Selection and Tissue Samples628

All postmortem frozen brain tissue samples were obtained from the Massachusetts629

Alzheimer’s Disease Research Center (ADRC) brain bank. A cohort of 24 patients630

was selected based on primary and secondary diagnoses, as well as clinical and631

demographic characteristics. Post-mortem neuropathological evaluations were632

used to classify cases on the basis of AD neuropathologic changes. Neurofibrillary633

tangle pathology was scored according to the Braak staging system5. Amyloid634

beta deposition was scored using the Thal staging system175. To increase statistical635

power to detect disease-associated proteomic changes, we classified subjects Braak636

V or VI cases as “AD”, while all other subjects were classified as “non-AD”.637

Subjects were chosen so that the cohort contained similar numbers of AD and non-638

AD cases, as well as males and females. Table 1 provides detailed demographic639

information for each subject. Approximately 2 g of prefrontal prefrontal cortex640

tissue (Brodmann area 9) was dissected from each case and immediately stored at641

−80 ◦C until processed.642

Table 1: Subject demographics. “ADRC” corresponds to the patient number, “PMI” - post-mortem
interval (hours) between death and tissue collection, “Primary / Secondary Dx” - primary or secondary
diagnosis, respectively, “CVD” - cardiovascular disease, “CAA” - cerebral amyloid angiopathy, “ARS” -
atherosclerosis. Ages greater than 90 are listed as “90+” per IRB rules regarding patient privacy.

ADRC Age Sex PMI Braak Stage Thal Stage Primary Dx Secondary Dx

1628 60 F unknown VI 4 AD CVD
1636 86 M 20 VI 3 AD
1669 86 M 10 I 0 control
1703 73 F 20 0 0 control
1821 92 M unknown II 0 control
1837 68 M 27 I 0 control
1845 90+ F 19 VI 5 AD CVD, CA
1854 85 F 6 III 2 AD CVD, CA
1886 58 F 18 0 0 control
1906 71 M 12 III 4 AD CVD, CA
1907 90+ F 14 III 2 AD
1926 82 F 6 V 4 AD CVD, CA
2015 90+ M 39 III 3 control AD
2018 90+ F 24 II 1 control
2068 79 F 9 II 0 control ARS
2112 78 M 5 VI 4 AD CV
2132 90+ F 30 V 4 AD CV
2191 87 M 21 II 3 control CVD, AD
2203 75 F 10 VI 5 AD CVD
2223 90+ M 21 VI 4 AD CV
2225 90+ F 14 V 4 AD CAA
2232 65 F 11 V 5 AD CVD
2233 72 F 10 VI 5 AD CVD, ARS
2259 90+ F 30 II 3 AD CVD
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Bulk Brain Tissue Processing and Protein Extraction643

Bulk tissue samples were processed to generate cell lysates using bead-based644

tissue disruption, as previously described176. Approximately 50 mg of tissue was645

transferred to a microcentrifuge tube containing zirconium oxide beads (Next646

Advance 430917) and 600 µl lysis buffer on ice. The lysis buffer contained 75647

M NaCl, 50 mM EPPS (pH 8.5), 10 mM sodium pyrophosphate, 10 mM sodium648

orthovanadate, 3% SDS, 10 mM PMSF, and one EDTA-free protease inhibitor649

tablet (Roche 11873580001). After adding the tissue, the tubes were transferred650

to a Mini-Beadbeater 16 (Biospec). Samples were processed for 30 seconds then651

placed on ice for 2 minutes. This process was then repeated twice to ensure the652

tissue lysed completely.653

We used the single-pot, solid phase-enhanced sample preparation (SP3) method177
654

to extract and purify peptides from brain tissue lysates. The SP3 workflow uses655

paramagnetic beads that bind proteins via hydrophilic interactions to separate656

proteins from complex mixtures177. Equal amounts of Sera-Mag E3 and E7 beads657

(5 mg; Cytiva 65152105050250 [E3] and 45152105050250 [E7]) were added to a658

microcentrifuge tube. To condition the beads, the tube was placed in a magnetic659

rack, the supernatant was removed, 200 µl of mass spectrometry grade water was660

added, and the mixture was gently mixed by pipetting after removal from the661

magnetic rack. This process was repeated twice. The conditioned beads were then662

added at a 10:1 (wt:wt) ratio to the tissue lysates and mixed by gentle pipetting.663

One volume of 100% ethanol was then added to the bead-lysate mixture to induce664

protein binding to the beads. To enhance protein binding to beads, tubes were665

incubated in a thermal mixer at 24 ◦C for 5 minutes with shaking at 1000 rpm.666

The tubes were then returned to the magnetic rack and the supernatant removed.667

The tube was then removed from the magnetic rack and washed three times with668

180 µl of 80% ethanol. The samples were then air dried. We carried out on-bead669

tryptic digestion of proteins to peptides by re-hydrating the samples in 100 mM670

triethylammonium bicarbonate buffer (TEAB; pH 8.5) and trypsin. Tubes were671

gently inverted to mix the beads and solution. Each tube was subsequently sonicated672

in a water bath to disrupt bead aggregates. Digests were carried out overnight by673

incubating samples on a thermal mixer set to 37 ◦C for 18 hours with shaking at674

1000 rpm. Peptide abundances were quantified by absorbance at 280 nm using675

a NanoDrop Eight spectrophotometer (Thermo). Peptide supernatants were then676

transferred to new tubes and evaporated to dryness. Samples were resuspended in677
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100 mM TEAB.678

To multiplex the analysis of brain tissue samples, peptide digests were labeled with679

mTRAQ using a previously-described approach38. We used the ∆0, ∆4, and ∆8680

tags (Sciex 4440015, 4427700, and 4427698, respectively) for sample labeling.681

Patients were assigned to batches, where each batch contains one sample each682

tagged with ∆0, ∆4, and ∆8 tags. Batch assignments were carried out so that each683

batch had a similar distribution of age, sex, and disease stage. Each mTRAQ tag684

was resuspended in isopropanol, then added a concentration of 0.1 U per 10 µg of685

peptides per sample. The tag labeling reaction was carried out by incubating the686

samples at room temperature for 2 hours. Labeling reactions were quenched by687

adding 0.25 % hydroxylamine to the samples and incubating for 1 hour at room688

temperature, as previously described38. After quenching, samples were pooled689

based on the batching scheme described above.690

LC-MS Analysis691

Sample batches were analysed by LC-MS using an Orbitrap Exploris 480 MS692

(Thermo) coupled to a vanquish Neo LC system. For each sample batch, 1 µg of693

peptides was loaded onto an Aurora Ultimate C18 (IonOpticks AUR3-25075C18;694

25 cm x 75 µm) column. Samples were separated using a 135 minute gradient695

consisting of varying amounts of 0.1% formic acid in MS-grade water (buffer A)696

and 80% acetonitrile (ACN), 0.1% formic acid in MS-grade water (buffer B). The697

gradient started at 5% buffer B, increased to 7% buffer B within 0.5 minutes, then698

ramped to 32% buffer B over 120 minutes, and finally increased to 95% buffer699

B over the final 2 minutes. The column was washed at 95% B for 8 min, before700

dropping back to 5% in 0.1 min. The flow was kept constant at 200 nL / min.701

The total MS acquisition time per sample was 135 min and data was acquired in702

data-independent acquisition (DIA) mode.703

To avoid contaminating the instrument with excess labeling reagent at the beginning704

of the gradient, the electrospray voltage was off during the first 5 minutes of each705

run and only set to 1900 V at minute 5. Since a droplet accumulates at the end of706

the emitter tip, it was blown off by an in-house developed assembly to the sweep707

gas outlet on the source and used time-dependent flow of 5 arbitrary units of sweep708

gas between minutes 4.5 and 5 of the method duration, as previously described178.709

The temperature of the ion transfer tube was 275 ◦C. One duty cycle consisted of710

2x (1 MS1 scan and 30 MS2 scans). The MS1 scans were conducted in profile711
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mode at a resolution of 120K with a scan range from 378 - 1372 m / z with RF lens712

level of 50% and a normalized AGC target of 300%. The first round of MS2 scans713

spanned a mass range of 380 - 620.5 m/z. The DIA windows were 8.5 Th wide714

with 0.5 Th overlaps. The normalized collision energy was set to 30, the orbitrap715

resolution was 30K, the RF lens level was set to 50%, the normalized AGC target716

was set to 1000%, and the maximum injection time was set to auto mode. The717

second round of MS2 scans was conducted at the same settings, but the mass range718

was 620 - 1370.5 m/z with 8.5 Th width for the first 8 DIA windows, then 17.5 Th719

for 9 windows, then 41.5 Th for 13 windows. The MS2 scans were acquired in720

centroid mode.721

In a separate experiment, we used gas phase fractionation of a pooled sample of722

brain tissue lysate protein digest labeled with mTRAQ ∆0 to create an empirical723

spectral library for searching our raw MS data44. To do so, we first pooled equal724

amounts of peptides from three samples (ADRC numbers 1845, 2097, and 2225).725

We then labeled the pooled sample with mTRAQ ∆0 using the labeling protocol726

described above. We injected 1 µg of labeled, pooled sample and six fractions were727

collected in triplicate. Library fractions were then analyzed on Orbitrap Exploris728

480 MS coupled to a Vanquish Neo LC system. Library fractions were profiled729

using the buffers and acquisition settings described above with the following730

modifications: 500 ng of peptide were loaded onto the C18 column. The gradient731

started at 4% B, increased to 5% B within 0.5 %min, then ramped to 28% B over732

120 min, and finally to 95% B over 2 min. The column was washed at 95% B for733

8 min, before dropping back to 4% in 0.1 min, with a constant flow rate of 200734

nL/min. The MS1 scans were conducted in profile mode at a resolution of 120K735

with RF lens level of 50501 m / z, 499 - 621 m / z, 619 - 741 m / z, 739 - 861 m / z,736

850 - 1101 m / z, 1099 - 1341 m / z. For the MS2 scans, the normalized collision737

energy was set to 30, the orbitrap resolution was 60K, the RF lens level was set to738

50%, the normalized AGC target was set to 1000% and the maximum injection739

time was set to auto mode. The MS2 scans were acquired in centroid mode. The740

first four fractions used 2.5 Th windows with 0.5 Th overlap, while the last two741

used 4.5 Th windows with 0.5 Th overlap.742

LC-MS Data Processing743

Library Generation744

Raw files from our gas phase fractionated samples were used to create an empirical745

library using DIA-NN41. To do so, we created an in silico library using a FASTA746
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file containing the sequences of proteins previously identified747

The resulting raw files were used to create a library in DIA-NN. First, an in silico748

library was created using fasta files of AD-relevant proteins from literature and749

the mTRAQ label was added as described previously38. The resulting predicted750

library was then used to search the replicate injections of each fraction to generate751

empirical libraries, which were then combined into one final library.752

Protein Identification753

We first searched the gas phase fractionated spectra to create an empirical spectral754

library using DIA-NN41. The generated library was used to search all samples.755

We used the following DIA-NN settings to search the gas phase fractionated data:756

N-terminal methionine excision: enabled, peptide length: 7 - 30 amino acids,757

precursor m / z: 375 - 880, and charge: 1 - 5, variable modifications: acetlyation758

and oxidation, and fixed modifications: mTRAQ. Channel-specific normalization759

was used and mass accuracy was set to 10 ppm for both MS1 and MS2. The760

match-between-runs feature was enabled.761

Data Processing and Analysis762

Raw Data Processing and Statistical Analysis763

Raw data was processed using a modified version of a previously-described ap-764

proach38. To improve quantitative accuracy, we corrected for potential isotopic765

envelope interference using a previously-described approach38. Briefly, we com-766

puted the theoretical distribution of isotopes for each precursor and used this767

distribution to correct the signal of from mTraq labels for MS1-level signal. We768

used the ’diann maxlfq’ function from the DIA-NN R package41 (which imple-769

ments the LFQ algorithm) to quantify protein group abundances based on MS1770

area. Quantified protein groups were subsequently batch corrected for mTraq label771

and run using ComBat179. Batch correction and all subsequent statistical analyses772

were carried out in the R statistical computing environment180.773

For the statistical analysis of the batch corrected, protein-level data, we first centered774

the columns of the proteins (rows), patient (columns) matrix to the median protein775

abundance for each patient. To make the quantification relative, we then normalized776

each protein to the mean of the 24 samples. We tested for differential abundance777

between AD and non-AD using a parametric F-test179, followed by false discovery778

rate (“FDR”) correction using the Benjamini-Hochberg method. We considered779
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proteins significantly differentially abundant when they had an FDR level q value780

≤ 0.05 and an absolute fold change greater than 1.5 between AD and non-AD.781

For the analysis of cellular compartment shifts, we used a previously-described782

approach for detecting systematic shifts in proteins annotated to a specific cellular783

compartment56. Briefly, we used the “MSigDB”181 R package, which queries the784

Molecular Signatures Database182, 183 to map proteins in our dataset to GO cellular785

compartment terms, then tested whether the terms are significantly shifted using a786

Wilcoxon test. Pairwise correlation matrices for various protein complexes, includ-787

ing the proteasome 20S core particle and 19S regulatory particle were computed as788

Pearson correlations. Protein set enrichment analyses were carried out using the789

“fgsea” R package184. For all protein set enrichment analyses, we considered GO790

terms significant at a 0.05 FDR.791

We used several publicly available tools and datasets for additional analyses. We792

used the “UniProt.ws” R package (DOI: 10.18129/B9.bioc.UniProt.ws) to down-793

load protein sequences and DISOPRED117 to predict the fraction of terminal disor-794

dered residues in each protein. For the analysis of UPS degrons in differentially795

abundant proteins, we used a curated database of E3 ubiquitin ligase-degron pair-796

ings and searched for matching sequences in our data. The TMEM94 structure797

was obtained from Alphafold185 and visualized using ChimeraX186, 187. Data on798

protein degradation data in mouse brain samples, mitochondrial ribosome turnover799

and assembly, and the degron potency of N-terminal TMEM94 peptides sequences800

were obtained from publicly available datasets from previous works105, 112, 121.801

To identify informative sets of ubiquitin system enzymes, we first correlated the802

relative level of each pair of E3 Ligases across all samples in our batch corrected803

matrix, rij for all pairs of proteins i ̸= j. As these correlations represent a804

measure of similarity, we can obtain a natural dissimilarity matrix as dij = 1− rij .805

We formed clusters using the complete linkage approach, whereby each pair of806

proteins is initialized into distinct, individual clusters. Then, the two clusters with807

minimum dissimilarity (or maximum correlation) are merged together. Next, for808

each iteration, the maximum dissimilarity is computed between each cluster, as the809

maximum distance across all pairs of members between two clusters. The clusters810

associated with the smallest maximum dissimilarity are merged together, and this811

process continues until all points have been merged into a single cluster. In order812

to obtain distinct clusters, we cut the hierarchical tree based on height. Branches813
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connected above this height are considered members of the same cluster. As the814

tree is computed using 1− correlation as the dissimilarity, and correlation can be815

measured as −1 to 1, the tree has maximum height 2, and clusters are formed in816

this case by cutting at 1.817

To provide a measure of the statistical significance of each cluster, we generated818

an empirical null distribution by sampling random clusters of ubiquitin system819

enzymes. We randomly permuted cluster labels 1000 times and at each iteration,820

we calculate the average pairwise correlation among members of permuted clusters.821

We compare the average pairwise correlation among members of our selected822

clusters to that of the bootstrap clusters. Note that, as performing hclust results823

in clustering for the entire set of pairwise protein correlations, the distribution824

of permuted cluster correlations reflects a local, and not global, null distribution.825

We considered significant clusters to be those exceeding the 99% quantile of the826

empirical null distribution.827

To evaluate the ability of ubiquitin system enzyme clusters to distinguish AD from828

non-AD samples, we used two complementary metrics. We first computed the F829

statistic by applying an ANOVA model to ubiquitin system enzymes present in830

each cluster, with AD status as the only explanatory variable. We used Euclidean831

distance, a complementary measure of discriminative ability, to further evaluate832

clusters. To obtain a scaled Euclidean distance, we compute the average relative833

protein intensity across patients with the same disease status for each ubiquitin834

system enzyme in each cluster. Next, we compute the euclidean distance between835

averages across disease status, and divide by the number of proteins in each cluster836

so as to ensure comparable distances between clusters of different sizes.837
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Supplementary Figures859

A B

C D

Supplementary Figure 1: Principal components analysis (PCA). PCA was used to visualize sample
similarity across relevant biological and technical variables. The plots show samples plotted along the first
and second principal components and colored according to A. AD status, B. binned age, C. sex, and D.
sample batch.
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Supplementary Figure 2: Heatmap of ubiquitin system enzymes colored by relative abundance for all 24
samples. Individual ubiquitin system enzymes are not clustered and samples are separated according to
disease status (AD or non-AD), highlighting an absence of systematic shifts in the abundance of ubiquitin
system enzymes.

860
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